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Announcements

• Homework #6 due today

• Lab #3 is due on Friday AT NOON!

• Homework Solutions are now online at:
http://cs.ucsb.edu/~zmatni/cs16/hwSolutions/

• Grades (finally) up on GauchoSpace!
– With caveats…
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More Announcements

• Please note that 2 of the TAs have amended 
office hours:

Magzhan Zholbaryssov Tue. 8-10 am
Dasha Rudneva Thu. 4-7 pm

• The syllabus is updated to reflect this

10/13/2016 Matni, CS16, Fa16 3



• Material: Everything we’ve done, incl. up to Th. 10/13
– Homework, Labs, Lectures, Textbook

• Tuesday, 10/18 in this classroom
• Starts at 2:00pm **SHARP**
• I will chose where you sit!
• Duration: 1 hour long
• Closed book: no calculators, no phones, no computers
• Only 1 sheet (single-sided) of written notes

– Must be no bigger than 8.5” x 11”
– You have to turn it in with the exam

• You will write your answers on the exam sheet itself.
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Lecture Outline

• More about Pre-Defined Functions in C++
– Type casting

• Programmer-Defined Functions in C++

• Procedural Abstraction
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Type Casting
• Recall the problem with integer division in C++:

int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = total_candy / number_of_people;

– candy_per_person = 2, not    2.25!

• A Type Cast produces a value of one type from another 
– static_cast<double>(total_candy) 

produces a double representing 
the integer value of total_candy
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Type Cast Example
int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = 

static_cast<double>(total_candy)/number_of_people;

– candy_per_person now is 2.25!

– The following would also work:
candy_per_person = 

total_candy / static_cast<double>(number_of_people);

– This, however, would not!
candy_per_person = static_cast<double>

(total_candy / number_of_people);

Integer division occurs 
before type cast!
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Question

• Can you determine the value of d?

double d = 11 / 2;

• What about this value of d?

double d = 11.0 / 2.0;
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Programmer-Defined Functions
• 2 components of a function definition

– Function declaration (or function prototype)
• Shows how the function is called from main() or other functions
• Declares the type of the function
• Must appear in the code before the function can be called
• Syntax:

Type_returned Function_Name(Parameter_List);
//Comment describing what function does

– Function definition
• Describes how the function does its task
• Can appear before or after the function is called
• Syntax: 

Type_returned Function_Name(Parameter_List)
{

//code to make the function work
}

;
Only needed for 
declaration statement



Function Declaration
• Declares:

– The return type
– The name of the function
– How many arguments are needed
– The types of the arguments
– The formal parameter names

• Formal parameters are like placeholders for the actual
arguments used when the function is called

• Formal parameter names can be any valid identifier

• Example:
double total_cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each



Function Definition
• Provides the same information as the declaration 
• Describes how the function does its task

• Example:

double total_cost(int number_par, double price_par)
{

const double TAX_RATE = 0.05; //5% tax
double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal * TAX_RATE);

}

function header

function body



The Return Statement

• Ends the function call
• Returns the value calculated by the function
• Syntax:

return expression;

– expression  performs a calculation
or

– expression is a variable containing the calculated value

• Example:     
return subtotal + subtotal * TAX_RATE;



The Function Call

• Tells the name of the function to use

• Lists the arguments

• Is used in a statement where the returned value 
makes sense

• Example:
double bill = total_cost(number, price);



10/13/2016 Matni, CS16, Fa16 15



Function Call Details
• The values of the arguments are plugged into the formal parameters

– Call-by-value mechanism with call-by-value parameters

• The first argument is used for the first formal parameter, 
the second argument for the second formal parameter, 
and so forth.

• The value plugged into the formal parameter is used in all instances of the 
formal parameter in the function body

• In other words, make sure everything matches, esp. your data types!



Alternate Declarations
• There are two forms for function declarations

– List formal parameter names
– List types of formal parameters, but not their names
– The 1st aids the description of the function in comments 

• Examples:       
double total_cost(int number_par, double price_par);

vs.

double total_cost(int, double);

• Function headers, however,
must always list formal parameter names!



Order of Arguments
• Compiler checks that the types of the arguments are correct and in the 

correct sequence
– Typical compile errors occur when we don’t pay attention to detail…

• Compiler cannot check that arguments are in the correct logical order

• Example:  Consider this function declaration – where’s the error? 

char grade(int received_par, int min_score_par);

int received = 95,  min_score = 60;

cout <<  grade( min_score, received);

This produces a faulty result because the arguments are not in 
the correct logical order.  The compiler will not catch this!



Function Definition Syntax

Within a function definition:
• Variables must be declared before they are used

• Variables are typically declared before the executable 
statements begin

• At least one return statement must end the function
– Each branch of an if-else statement might have its

own return statement
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Placing Definitions
• A function call must be 

preceded by either
– The function’s declaration

or
– The function’s definition

• If the function’s definition 
precedes the call,  a 
declaration is not needed 

• ProTip: 
Placing the 
function declaration prior to 
the main function and the 
function definition after
the main function leads 
naturally to building your own 
libraries in the future

Main program:

Function call

Function declaration

Function definition

OK
(preferred)

Main program:

Function call

Function declaration

Function definition

Also OK



bool Return Values

• A function can return a Boolean value
– Such a function can be used where a Boolean expression is expected

• Makes programs easier to read

• Compare
if (((rate >=10) && ( rate < 20)) || (rate == 0))

to
if (appropriate (rate))

– Which is easier to read!?
• This works assuming, of course, that function appropriate

returns a bool value based on the expression above



Function appropriate
• To use function appropriate in the if-statement

if (appropriate (rate))
{    …    }

appropriate could be defined as

bool appropriate(int rate)
{
return (((rate >=10) && ( rate < 20)) || (rate == 0));
}
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Black Box Abstraction

• A “black box” refers to something that we know how 
to use, but the method of its internal operation is 
unknown

• A person using a program does not need to know
how it is coded

• A person using a program needs to know what the
program does, not how it does it
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Procedural Abstraction and C++

• Procedural Abstraction is writing and using functions as if they 
were “black boxes”

• Procedure is a general term meaning a “function like”
set of instructions

• Abstraction implies that when you use a function as a “black 
box”, you abstract away the details of the code in the function 
body



Procedural Abstraction and Functions

• Write functions so the declaration and comment is all a 
programmer needs to use the function

• Function comment should tell all conditions required of 
arguments to the function

• Function comment should also describe the returned value

• Variables used in the function, other than the formal 
parameters, should be declared in the function body



Formal Parameter Names
• Functions are designed as self-contained modules

• Different programmers may write each function 

• Programmers should choose meaningful names for formal 
parameters
– i.e. avoid generic parametric names like “x”, or “number”, if possible
– Formal parameter names may or may not match variable names used 

in the main part of the program
– BUT! That does not matter!

• Remember that only the value of the argument is plugged 
into the formal parameter
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Example Function: Factorial
• n!  Represents the factorial function
• n! = 1 x 2 x 3 x … x n
• We need this function to:

– Require one argument of type int, call it “n”
– Return a value of type int
– Use a local variable to store the running product
– Decrement n each time it does another multiplication:

n * n-1 * n-2 * … * 1
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Global Constants
• Global Named Constant

– Available to more than one function as well as the main part of the 
program

– Declared outside any function body
– Declared outside the main function body 
– Declared before any function that uses it

• Example:     
const double PI = 3.14159;
double volume(double);

int main()
{…}

– PI is available to the main function and to function volume



Global Variables

• Rarely used

• When more than one function must use a common variable

• Declared just like a global constant except const is not used

• Generally make programs more difficult to understand and 
maintain, so it’s not considered “good practice”



Formal Parameters are Local Variables

• Formal parameters are actually variables that are
local to the function definition
– They are used just as if they were declared in the function body
– Do NOT re-declare the formal parameters in the function body, they 

are declared in the function declaration

• When a function is called, the formal parameters are 
initialized to the values of the arguments in the function call



Block Scope

• Local and global variables conform to the rules of 
Block Scope

• The code block (generally defined by the { }) where 
an identifier like a variable is declared determines 
the scope of the identifier

• Blocks can be nested



Block Scope



The Benefits of Namespace
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The calls for cout and endl go to a block called std that is in the iostream library.
The calls for pow() go to a block called std that is in the cmath library.



Namespaces Revisited

• We will be eventually be using:

more namespaces than just std.
&
different namespaces in different function definitions.
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Namespaces Revisited

• The start of a file is not always the best place for
using namespace std;

• Different functions may use different namespaces

• Placing  using namespace std; inside the starting brace of a 
function
– Allows the use of different namespaces in different functions
– Makes the “using” directive local to the function



TO DOs
• Study for your midterm!!!

• No homework due on Tuesday 10/18 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!omg!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
– I will issue new homework at the start of next week that will be due on 

Thursday 10/20

• Lab #3
– Due Friday, 10/14, at noon

• Lab #4 will be posted by the end of the weekend
– You still have lab on Monday 10/17
– The new lab, however, will be due on Monday 10/24 (not Friday 10/21! Yay!)
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