
Pre- and Programmer-Defined Functions
&

Procedural Abstraction

CS 16: Solving Problems with Computers I
Lecture #7

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Homework #6 due today

• Lab #3 is due on Friday AT NOON!

• Homework Solutions are now online at:
http://cs.ucsb.edu/~zmatni/cs16/hwSolutions/

• Grades (finally) up on GauchoSpace!
– With caveats…

10/13/2016 Matni, CS16, Fa16 2

http://cs.ucsb.edu/%7Ezmatni/cs16/hwSolutions/

More Announcements

• Please note that 2 of the TAs have amended
office hours:

Magzhan Zholbaryssov Tue. 8-10 am
Dasha Rudneva Thu. 4-7 pm

• The syllabus is updated to reflect this

10/13/2016 Matni, CS16, Fa16 3

• Material: Everything we’ve done, incl. up to Th. 10/13
– Homework, Labs, Lectures, Textbook

• Tuesday, 10/18 in this classroom
• Starts at 2:00pm **SHARP**
• I will chose where you sit!
• Duration: 1 hour long
• Closed book: no calculators, no phones, no computers
• Only 1 sheet (single-sided) of written notes

– Must be no bigger than 8.5” x 11”
– You have to turn it in with the exam

• You will write your answers on the exam sheet itself.
10/13/2016 Matni, CS16, Fa16 4

Lecture Outline

• More about Pre-Defined Functions in C++
– Type casting

• Programmer-Defined Functions in C++

• Procedural Abstraction

10/13/2016 Matni, CS16, Fa16 5

Type Casting
• Recall the problem with integer division in C++:

int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = total_candy / number_of_people;

– candy_per_person = 2, not 2.25!

• A Type Cast produces a value of one type from another
– static_cast<double>(total_candy)

produces a double representing
the integer value of total_candy

10/13/2016 Matni, CS16, Fa16 6

Type Cast Example
int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person =

static_cast<double>(total_candy)/number_of_people;

– candy_per_person now is 2.25!

– The following would also work:
candy_per_person =

total_candy / static_cast<double>(number_of_people);

– This, however, would not!
candy_per_person = static_cast<double>

(total_candy / number_of_people);

Integer division occurs
before type cast!

10/13/2016 Matni, CS16, Fa16 7

Question

• Can you determine the value of d?

double d = 11 / 2;

• What about this value of d?

double d = 11.0 / 2.0;

10/13/2016 Matni, CS16, Fa16 8

10/13/2016 Matni, CS16, Fa16 9

Programmer-Defined Functions
• 2 components of a function definition

– Function declaration (or function prototype)
• Shows how the function is called from main() or other functions
• Declares the type of the function
• Must appear in the code before the function can be called
• Syntax:

Type_returned Function_Name(Parameter_List);
//Comment describing what function does

– Function definition
• Describes how the function does its task
• Can appear before or after the function is called
• Syntax:

Type_returned Function_Name(Parameter_List)
{

//code to make the function work
}

;
Only needed for
declaration statement

Function Declaration
• Declares:

– The return type
– The name of the function
– How many arguments are needed
– The types of the arguments
– The formal parameter names

• Formal parameters are like placeholders for the actual
arguments used when the function is called

• Formal parameter names can be any valid identifier

• Example:
double total_cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each

Function Definition
• Provides the same information as the declaration
• Describes how the function does its task

• Example:

double total_cost(int number_par, double price_par)
{

const double TAX_RATE = 0.05; //5% tax
double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal * TAX_RATE);

}

function header

function body

The Return Statement

• Ends the function call
• Returns the value calculated by the function
• Syntax:

return expression;

– expression performs a calculation
or

– expression is a variable containing the calculated value

• Example:
return subtotal + subtotal * TAX_RATE;

The Function Call

• Tells the name of the function to use

• Lists the arguments

• Is used in a statement where the returned value
makes sense

• Example:
double bill = total_cost(number, price);

10/13/2016 Matni, CS16, Fa16 15

Function Call Details
• The values of the arguments are plugged into the formal parameters

– Call-by-value mechanism with call-by-value parameters

• The first argument is used for the first formal parameter,
the second argument for the second formal parameter,
and so forth.

• The value plugged into the formal parameter is used in all instances of the
formal parameter in the function body

• In other words, make sure everything matches, esp. your data types!

Alternate Declarations
• There are two forms for function declarations

– List formal parameter names
– List types of formal parameters, but not their names
– The 1st aids the description of the function in comments

• Examples:
double total_cost(int number_par, double price_par);

vs.

double total_cost(int, double);

• Function headers, however,
must always list formal parameter names!

Order of Arguments
• Compiler checks that the types of the arguments are correct and in the

correct sequence
– Typical compile errors occur when we don’t pay attention to detail…

• Compiler cannot check that arguments are in the correct logical order

• Example: Consider this function declaration – where’s the error?

char grade(int received_par, int min_score_par);

int received = 95, min_score = 60;

cout << grade(min_score, received);

This produces a faulty result because the arguments are not in
the correct logical order. The compiler will not catch this!

Function Definition Syntax

Within a function definition:
• Variables must be declared before they are used

• Variables are typically declared before the executable
statements begin

• At least one return statement must end the function
– Each branch of an if-else statement might have its

own return statement

10/13/2016 Matni, CS16, Fa16 20

Placing Definitions
• A function call must be

preceded by either
– The function’s declaration

or
– The function’s definition

• If the function’s definition
precedes the call, a
declaration is not needed

• ProTip:
Placing the
function declaration prior to
the main function and the
function definition after
the main function leads
naturally to building your own
libraries in the future

Main program:

Function call

Function declaration

Function definition

OK
(preferred)

Main program:

Function call

Function declaration

Function definition

Also OK

bool Return Values

• A function can return a Boolean value
– Such a function can be used where a Boolean expression is expected

• Makes programs easier to read

• Compare
if (((rate >=10) && (rate < 20)) || (rate == 0))

to
if (appropriate (rate))

– Which is easier to read!?
• This works assuming, of course, that function appropriate

returns a bool value based on the expression above

Function appropriate
• To use function appropriate in the if-statement

if (appropriate (rate))
{ … }

appropriate could be defined as

bool appropriate(int rate)
{
return (((rate >=10) && (rate < 20)) || (rate == 0));
}

10/13/2016 Matni, CS16, Fa16 24

Black Box Abstraction

• A “black box” refers to something that we know how
to use, but the method of its internal operation is
unknown

• A person using a program does not need to know
how it is coded

• A person using a program needs to know what the
program does, not how it does it

10/13/2016 Matni, CS16, Fa16 25

Procedural Abstraction and C++

• Procedural Abstraction is writing and using functions as if they
were “black boxes”

• Procedure is a general term meaning a “function like”
set of instructions

• Abstraction implies that when you use a function as a “black
box”, you abstract away the details of the code in the function
body

Procedural Abstraction and Functions

• Write functions so the declaration and comment is all a
programmer needs to use the function

• Function comment should tell all conditions required of
arguments to the function

• Function comment should also describe the returned value

• Variables used in the function, other than the formal
parameters, should be declared in the function body

Formal Parameter Names
• Functions are designed as self-contained modules

• Different programmers may write each function

• Programmers should choose meaningful names for formal
parameters
– i.e. avoid generic parametric names like “x”, or “number”, if possible
– Formal parameter names may or may not match variable names used

in the main part of the program
– BUT! That does not matter!

• Remember that only the value of the argument is plugged
into the formal parameter

10/13/2016 Matni, CS16, Fa16 29

Example Function: Factorial
• n! Represents the factorial function
• n! = 1 x 2 x 3 x … x n
• We need this function to:

– Require one argument of type int, call it “n”
– Return a value of type int
– Use a local variable to store the running product
– Decrement n each time it does another multiplication:

n * n-1 * n-2 * … * 1

10/13/2016 Matni, CS16, Fa16 31

10/13/2016 Matni, CS16, Fa16 32

Global Constants
• Global Named Constant

– Available to more than one function as well as the main part of the
program

– Declared outside any function body
– Declared outside the main function body
– Declared before any function that uses it

• Example:
const double PI = 3.14159;
double volume(double);

int main()
{…}

– PI is available to the main function and to function volume

Global Variables

• Rarely used

• When more than one function must use a common variable

• Declared just like a global constant except const is not used

• Generally make programs more difficult to understand and
maintain, so it’s not considered “good practice”

Formal Parameters are Local Variables

• Formal parameters are actually variables that are
local to the function definition
– They are used just as if they were declared in the function body
– Do NOT re-declare the formal parameters in the function body, they

are declared in the function declaration

• When a function is called, the formal parameters are
initialized to the values of the arguments in the function call

Block Scope

• Local and global variables conform to the rules of
Block Scope

• The code block (generally defined by the { }) where
an identifier like a variable is declared determines
the scope of the identifier

• Blocks can be nested

Block Scope

The Benefits of Namespace

10/13/2016 Matni, CS16, Fa16 38

The calls for cout and endl go to a block called std that is in the iostream library.
The calls for pow() go to a block called std that is in the cmath library.

Namespaces Revisited

• We will be eventually be using:

more namespaces than just std.
&
different namespaces in different function definitions.

10/13/2016 Matni, CS16, Fa16 39

Namespaces Revisited

• The start of a file is not always the best place for
using namespace std;

• Different functions may use different namespaces

• Placing using namespace std; inside the starting brace of a
function
– Allows the use of different namespaces in different functions
– Makes the “using” directive local to the function

TO DOs
• Study for your midterm!!!

• No homework due on Tuesday 10/18 !!
!!omg!!!
– I will issue new homework at the start of next week that will be due on

Thursday 10/20

• Lab #3
– Due Friday, 10/14, at noon

• Lab #4 will be posted by the end of the weekend
– You still have lab on Monday 10/17
– The new lab, however, will be due on Monday 10/24 (not Friday 10/21! Yay!)

10/13/2016 Matni, CS16, Fa16 43

10/13/2016 Matni, CS16, Fa16 44

	Pre- and Programmer-Defined Functions�&�Procedural Abstraction
	Announcements
	More Announcements
	MIDTERM IS COMING!
	Lecture Outline
	Type Casting
	Type Cast Example
	Question
	Slide Number 9
	Programmer-Defined Functions
	Function Declaration
	Function Definition
	The Return Statement
	The Function Call
	Slide Number 15
	Function Call Details
	Alternate Declarations
	Order of Arguments
	Function Definition Syntax
	Slide Number 20
	Placing Definitions
	bool Return Values
	Function appropriate
	Slide Number 24
	Black Box Abstraction
	Procedural Abstraction and C++
	Procedural Abstraction and Functions
	Formal Parameter Names
	Slide Number 29
	Example Function: Factorial
	Slide Number 31
	Slide Number 32
	Global Constants
	Global Variables
	Formal Parameters are Local Variables
	Block Scope
	Block Scope
	The Benefits of Namespace
	Namespaces Revisited
	Namespaces Revisited
	Example Function: Factorial
	Slide Number 42
	TO DOs
	Slide Number 44

