
Designing Loops and General Debug
Pre-Defined Functions in C++

CS 16: Solving Problems with Computers I
Lecture #6

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Homework #5 due today

• Lab #3 is due on Friday AT NOON!

• Homework Solutions are now online at:
http://cs.ucsb.edu/~zmatni/cs16/hwSolutions/

10/11/2016 Matni, CS16, Fa16 2

http://cs.ucsb.edu/%7Ezmatni/cs16/hwSolutions/

• Material: Everything we’ve done, incl. up to Th. 10/13
– Homework, Labs, Lectures, Textbook

• Tuesday, 10/18 in this classroom
• Starts at 2:00pm **SHARP**
• I will chose where you sit!
• Duration: 1 hour long
• Closed book: no calculators, no phones, no computers
• Only 1 sheet (single-sided) of written notes

– Must be no bigger than 8.5” x 11”
– You have to turn it in with the exam

• You will write your answers on the exam sheet itself.
10/11/2016 Matni, CS16, Fa16 3

Sample Question
Multiple Choice

Complete the following C++ code that is supposed
to print the numbers 2, 3, 4, 5, 6:

int c = 0;
while (_____________) {
cout << c+2 << “ ”;
c++; }

A. c < 7
B. c > 5
C. (c + 2) <= 6
D. (c + 2) != 7
E. c != 6

10/11/2016 Matni, CS16, Fa16 4

In this example, either C or D can
be considered correct answers

Sample Question
Coding

Write C++ code that generates a random
number between 3 and 7 and then prints out
that number in words. For example, the
program prints out “five” if the random
number was 5.

- Note:
When I ask for code, that’s different then when I ask for an entire program.

10/11/2016 Matni, CS16, Fa16 5

Sample Question
Coding

10/11/2016 Matni, CS16, Fa16 6

Reproduce the output of this C++ code exactly.

int prod(1);
for (int m = 1; m <= 6; m++) {

prod *= m;
m += 2;

}
cout << “Total product is: ” << prod << endl;

Lecture Outline

• Designing Loops in C++
– And debugging them

• Top-Down Design Concepts

• Pre-Defined Functions in C++

10/11/2016 Matni, CS16, Fa16 7

Designing Loops

• What do I need to know?
– What am I doing inside the loop?
– What are my initializing statements?
– What are the conditions for ending the loop?

10/11/2016 Matni, CS16, Fa16 8

Sums and Products
• A common task is reading a list of numbers

and computing the sum
– Pseudocode for this task might be:

sum = 0;
repeat the following this_many times

cin >> next;
sum = sum + next;

end of loop

– How can we best implement this code?
• Let’s look at it as a for-loop on the next slide…

10/11/2016 Matni, CS16, Fa16 9

for-loop for a sum
• The pseudocode from the previous slide is implemented as

int sum = 0;
for(int count=1; count <= this_many; count++)

{
cin >> next;
sum = sum + next;

}

• Note that “sum” must be initialized prior to the loop body!

10/11/2016 Matni, CS16, Fa16 10

Repeat "this many times"
• ProTip: Pseudocode containing the line

repeat the following "this many times"
is often implemented with a for-loop

• A for-loop is generally the choice when there is
a predetermined number of iterations

10/11/2016 Matni, CS16, Fa16 11

for-loop For a Product
• Forming a product is very similar to the sum

example seen earlier

int product = 1;
for(int count=1; count <= this_many; count++)
{

cin >> next;
product = product * next;

}

• Note that “product” must be initialized prior to the loop body
• Also, notice that product is initialized to 1, not 0!

10/11/2016 Matni, CS16, Fa16 12

Ending a Loop

• The are four common methods to terminate an input loop:
– List headed by size

• When we can determine the size of the list beforehand

– Ask before iterating
• Ask if the user wants to continue before each iteration

– List ended with a sentinel value
• Using a particular value to signal the end of the list

– Running out of input
• Using the eof function to indicate the end of a file

10/11/2016 Matni, CS16, Fa16 9

List Headed By Size
• The for-loops we have seen provide a natural implementation of the list

headed by size method of ending a loop

– Example:
int items;
cout << "How many items in the list?";
cin >> items;
for(int count = 1; count <= items; count++)

{
int number;
cout << "Enter number " << count;
cin >> number;
cout << endl;

// statements to process the number
}

10/11/2016 Matni, CS16, Fa16 14

Ask Before Iterating
• A while loop is used here to implement the ask before

iterating method to end a loop.

sum = 0;
cout << "Are there numbers in the list (Y/N)?";
char ans;
cin >> ans;

while ((ans == 'Y') || (ans == 'y'))
{

//statements to read and process the number

cout << "Are there more numbers(Y/N)? ";
cin >> ans;

}

10/11/2016 Matni, CS16, Fa16 15

List Ended With a Sentinel Value
• A while loop is typically used to end a loop using the list ended with a

sentinel value method

cout << "Enter a list of nonnegative integers.\n"
<< "Place a negative integer after the list.\n";

sum = 0;
cin >> number;
while (number > 0)

{
//statements to read/process number
cin >> number;

}

– Notice that the sentinel value is read, but not processed at the end

10/11/2016 Matni, CS16, Fa16 16

Running Out of Input

• The while loop is typically used to implement the running out
of input method of ending a loop

ifstream infile;
infile.open("data.dat");
while (! infile.eof())

{
// read and process items from the file
// File I/O covered in Chapter 6
}

infile.close();

10/11/2016 Matni, CS16, Fa16 17

General Methods To Control Loops

• Three general methods to control any loop

– Count controlled loops

– Ask before iterating

– Exit on flag condition

10/11/2016 Matni, CS16, Fa16 18

Count Controlled Loops

• Count controlled loops are loops that
determine the number of iterations before the
loop begins

– The list headed by size is an example of a count
controlled loop for input

10/11/2016 Matni, CS16, Fa16 19

Exit on Flag Condition

• Loops can be ended when a particular flag
condition exists
– Flag: A variable that changes value to indicate that

some event has taken place

– Examples of exit on a flag condition for input
• List ended with a sentinel value
• Running out of input

10/11/2016 Matni, CS16, Fa16 20

Exit on Flag Example
• Consider this loop to identify a student with a grade of 90 or

better and think of how it’s logically limited.

int n = 1;
grade = compute_grade(n);

while (grade < 90)
{

n++;
grade = compute_grade(n);

}
cout << "Student number " << n

<< " has a score of " << grade << endl;

10/11/2016 Matni, CS16, Fa16 21

The Problem

• The loop on the previous slide might not stop at the
end of the list of students if no student has a grade
of 90 or higher

– It is a good idea to use a second flag to ensure that there
are still students to consider

– The code on the following slide shows a better solution

10/11/2016 Matni, CS16, Fa16 22

The Exit On Flag Solution

• This code solves the problem of having no student grade at 90
or higher, making use of a flag (the variable n):

int n=1;
grade = compute_grade(n);
while ((grade < 90) && (n < number_of_students))
{

// same as before
}
if (grade > 90)

// same output as before
else

cout << "No student has a high score.";

10/11/2016 Matni, CS16, Fa16 23

Nested Loops

• The body of a loop may contain any kind of statement,
including another loop

– When loops are nested, all iterations of the inner loop
are executed for each iteration of the outer loop

– ProTip: Give serious consideration to making the inner
loop a function call to make it easier to read your program

10/11/2016 Matni, CS16, Fa16 24

int grand_total = 0, subtotal = 0, count, next, number_of_reports = 10;
for (count = 1; count <= number_of_reports; count++) {

cout << "Enter the report of conservationist number ”<< count << endl;
cout << “Enter the number of eggs in each nest. End list with a negative number.\n”
cin >> next;
while (next >=0) {

subtotal = subtotal + next;
cin >> next;

} // end while loop
cout << "Total egg count for conservationist number ” << count << “is ” << subtotal <<
endl;
grand_total = grand_total + subtotal;

} // end for loop

cout << “Total egg count for all reports = ” << grand_total << endl;

return 0;
} // end program

Example of a Nested Loop

Debugging Loops

• Common errors involving loops include

– Off-by-one errors in which the loop executes
one too many or one too few times

– Infinite loops usually result from a mistake in the
Boolean expression that controls the loop

10/11/2016 Matni, CS16, Fa16 26

Fixing Off By One Errors

• Check your comparison:
should it be < or <=?

• Check that the initialization uses the correct value

• Does the loop handle the zero iterations case?

10/11/2016 Matni, CS16, Fa16 27

Fixing Infinite Loops

• Check the direction of inequalities:
< or > ?

• Test for < or > rather than equality (==)

10/11/2016 Matni, CS16, Fa16 28

More Loop Debugging Tips

• Be sure that the mistake is really in the loop

• Trace the variable to observe how the variable
changes
– Tracing a variable is watching its value change during

execution.
– Best way to do this is to insert cout statements

to have the program show you the variable at every iteration
of the loop.

10/11/2016 Matni, CS16, Fa16 29

Debugging Example

• The following code is supposed to conclude with the variable
product containing the product of the numbers 2 through 5
– i.e. 2 x 3 x 4 x 5, which, of course, is 120.

• What could go wrong?!

int next = 2, product = 1;
while (next < 5)

{
next++;
product = product * next;

}

DEMO!
Using variable tracing

10/11/2016 Matni, CS16, Fa16 30

Loop Testing Guidelines

• Every time a program is changed, it should be retested
– Changing one part may require a change to another

• Every loop should at least be tested using input to cause:
– Zero iterations of the loop body
– One iteration of the loop body
– One less than the maximum number of iterations
– The maximum number of iterations

10/11/2016 Matni, CS16, Fa16 31

Starting Over

• Sometimes it is more efficient to throw out a
buggy program and start over!

– The new program will be easier to read
– The new program is less likely to be as buggy
– You may develop a working program faster than if

you repair the bad code
• The lessons learned in the buggy code will help you

design a better program faster

10/11/2016 Matni, CS16, Fa16 32

Top Down Design Concept
• In general, to write a program

1. Develop the algorithm that the program will use
2. Translate the algorithm into the programming language

• Top Down Design (also called stepwise refinement)
1. Break the algorithm into subtasks
2. Break each subtask into smaller subtasks
3. Eventually the smaller subtasks are trivial to implement in the

programming language

10/11/2016 Matni, CS16, Fa16 33

Predefined Functions in C++

10/11/2016 Matni, CS16, Fa16 34

Predefined Functions
• C++ comes with “built-in” libraries of predefined functions

• Example: sqrt function (found in the library cmath)
– Computes and returns the square root of a number

the_root = sqrt(9.0);

– The number 9 is called the argument
– After calculation, the variable the_root will contain 3.0

• Can variable the_root be either int or double?

10/11/2016 Matni, CS16, Fa16 35

Function Calls

• sqrt(9.0) is a function call
– It invokes a pre-defined function
– The argument (9), can also be a variable or an

expression

• A function call can be used like any expression
bonus = sqrt(sales) / 10;

cout << “The side of a square with area ” << area
<< “ is ”
<< sqrt(area);

10/11/2016 Matni, CS16, Fa16 36

Function Call Syntax

Function_Name (Argument_List)
– Argument_List is a comma separated list:

(Argument_1, Argument_2, … , Argument_Last)

• Example:
side = sqrt(area);

cout << “2.5 to the power 3.0 is “
<< pow(2.5, 3.0);

10/11/2016 Matni, CS16, Fa16 37

Function Libraries

• Predefined functions are found in libraries
• The library must be “included” in a program to make the

functions available
• An include directive tells the compiler which library header

file to include.
• To include the math library containing sqrt(), pow() & others:

#include <cmath>

• Newer standard libraries, such as cmath, also require
the directive

using namespace std;

10/11/2016 Matni, CS16, Fa16 38

Other Predefined Functions
• abs(x) --- int value = abs(-8);

– Returns absolute value of argument x
– Return value is of type int
– Argument is of type int
– Found in the library cmath

• fabs(x) --- double value = fabs(-8.0);
– Also returns absolute value of argument x
– Return value is of type double
– Argument is of type double
– Found in the library cmath

10/11/2016 Matni, CS16, Fa16 39

Random Number Generation
• Not true-random, but pseudo-random numbers.

• First, seed the random number generator only once
#include <cstdlib>
#include <ctime>
srand(time(0));

– time() is a pre-defined function in the ctime library
• It gives the current system time

– It’s used here because it generates a distinctive enough seed, so that rand()
generates a “good enough” random number.

• Secondly, use the rand() function, which returns a random integer that is
greater than or equal to 0 and less than RAND_MAX (a library-dependent
value, but is at least 32767)

int r = rand();

10/11/2016 Matni, CS16, Fa16 40

Random Numbers
– Use % and + to scale to the number range you want

• For example to get a random number bounded
from 1 to 6 to simulate rolling a six-sided die:

int die = (rand() % 6) + 1;

10/11/2016 Matni, CS16, Fa16 41

TO DOs

• Readings
– The rest of Chapter 4, of textbook

• Homework #6
– Due on Thursday, 10/13 and submit in class

• Lab #3
– Due Friday, 10/14, at noon

10/11/2016 Matni, CS16, Fa16 42

10/11/2016 Matni, CS16, Fa16 43

	Designing Loops and General Debug�Pre-Defined Functions in C++
	Announcements
	MIDTERM IS COMING!
	Sample Question�Multiple Choice
	Sample Question�Coding
	Sample Question�Coding
	Lecture Outline
	Designing Loops
	Sums and Products
	for-loop for a sum
	Repeat "this many times"
	for-loop For a Product
	Ending a Loop
	List Headed By Size
	Ask Before Iterating
	List Ended With a Sentinel Value
	Running Out of Input
	General Methods To Control Loops
	Count Controlled Loops
	Exit on Flag Condition
	Exit on Flag Example
	The Problem
	The Exit On Flag Solution
	Nested Loops
	Example of a Nested Loop
	Debugging Loops
	Fixing Off By One Errors
	Fixing Infinite Loops
	More Loop Debugging Tips
	Debugging Example
	Loop Testing Guidelines
	Starting Over
	Top Down Design Concept
	Predefined Functions in C++
	Predefined Functions
	Function Calls
	Function Call Syntax
	Function Libraries
	Other Predefined Functions
	Random Number Generation
	Random Numbers
	TO DOs
	Slide Number 43

