
Flow Control in C++ 2

CS 16: Solving Problems with Computers I
Lecture #5

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Homework #4 due today
• Lab #2 is due on Friday AT NOON!

– Use submit.cs

• Class is closed to new registration
• No more switching lab times

• Re: Piazza
– “Great job” to the people asking and answering questions!

10/6/2016 Matni, CS16, Fa16 2

Lecture Outline

• Boolean Expressions in Flow Control

• Multiway Branches

• More about C++ Loop Statements

10/6/2016 Matni, CS16, Fa16 3

Precedence Rules on Operations
in C++

10/6/2016 Matni, CS16, Fa16 4

Applying the Precedence Rule

4 * x + 1 > 2 || x + 1 < -3 && x >= 0

• Let’s figure out what this will do according to
precedence rules

• Answer: This is equivalent to:
(((4 * x) + 1) > 2) || (((x + 1) < -3) && (x >= 0))

10/6/2016 Matni, CS16, Fa16 5

Run Time Errors

Compile Time Errors
• Errors that occur during compilation of a program.

Run Time Errors
• Errors that occur during the execution of a program
• Runtime errors indicate bugs in the program (bad design) or

unanticipated problems (like running out of memory)
• Examples:

– Dividing by zero
– Bad memory calls in the program
– Segmentation errors

10/6/2016 Matni, CS16, Fa16 6

Short-Circuit Evaluation

• Avoid possible run time errors by using the right Boolean expression

• If you strategically use the && operator, then some Boolean expressions
do not need to be completely evaluated
– Especially if they can potentially cause run time errors
– This is known as “short-circuit evaluation”

• Consider this if-statement:
if ((kids != 0) && (pieces / kids >= 2))

cout << "Each child may have two pieces!”;

• If the value of kids is zero,
short-circuit evaluation prevents evaluation of (pieces / 0 >= 2)
• Division by zero causes a run-time error

10/6/2016 Matni, CS16, Fa16 7

Boolean and Integer Crossovers in C++

• In C++, you can use an integer as if it’s a Boolean

• An integer that’s zero can be evaluated as “false”
• An integer that’s not zero (usually 1), “true”

• Other languages (eg. Python) reserve actual
non-numerical values for Booleans to avoid this
– Much less confusing…

10/6/2016 Matni, CS16, Fa16 8

Potential Trouble With ! Use

• Consider these 2 expressions, where say, time = 45 & limit = 60:
!time > limit ……(1)
!(time > limit) ……(2)

• If we are trying to express a Boolean test to verify that time is
NOT larger than limit, then statement (2) is the correct usage.
– (2): !(time > limit), i.e. !(45 > 60) = !(false) = true

• Statement (1) evaluates differently because of precedence rules
– (1): (!time) > limit, or false!!

Why?

10/6/2016 Matni, CS16, Fa16 9

Potential Trouble With ! Use

• Why does (!time) > limit evaluate to false?!

• time = 45 (i.e. a non-zero number), so
if it’s assessed as a Boolean, that’s a true statement.

• So then !time evaluates to false, or 0

• So, the statement becomes:
0 > limit, or
0 > 60,

which is false…

10/6/2016 Matni, CS16, Fa16 10

AVOID WEIRD LOGIC SITUATIONS:

1. Always use ()s and use them
properly!

2. Before using the ! operator,
see if you can express the same
idea without it.

Enumeration of Constants
Data Types

• You’ll recall: you can define a constant in C++
const int luckyNumber = 7;

• You can also define a bunch of constants together with the enum
type (has to be int types):

enum MonthLengths {
JanLength = 31;
FebLength = 28;

…}

• Unless specified, the value assigned an enumeration constant is 1
more than the previous constant.
– If not specified, the first constant is assigned value 0.
– More on this in the textbook.

10/6/2016 Matni, CS16, Fa16 11

Multiway Branching
• Nesting (embedding) one if/else statement in another.

if (count < 10)
if (x < y)

cout << x << " is less than " << y;
else

cout << y << " is less than " << x;

• Note the tab indentation at each level of nesting.
• There are pitfalls to writing nested if/else statements, so be

careful in how you write these!!!
– Watch your indentations
– Make use of { … } brackets to make it clear what your intentions are

10/6/2016 Matni, CS16, Fa16 12

What’s Wrong With This Code?

if (fuel_gauge_reading < 0.75)
if (fuel_gauge_reading < 0.25)

cout << "Fuel very low. Caution!\n";
else

cout << "Fuel over 3/4. Don't stop now!\n";

10/6/2016 Matni, CS16, Fa16 13

Defaults in Nested IF/ELSE Statements

• When the conditions tested in an if-else-statement are
mutually exclusive, the final if-else can sometimes be omitted

EXAMPLE:

10/6/2016 Matni, CS16, Fa16 14

if (guess > number)
cout << “Too high.”;

else if (guess < number)
cout << “Too low.”;

else if (guess == number)
cout << “Correct!”;

if (guess > number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.”;

else cout << "Correct!";

i.e. All other possibilities

Simplify This Code

10/6/2016 Matni, CS16, Fa16 15

if (amount < 10)
cout << “This number is less than 10\n";

else if ((amount >= 10) && (amount < 25))
cout << “This number is between 10 and 25\n”;

else if ((amount >= 25) && (amount < 40))
cout << “This number is between 25 and 40\n”;

if (amount < 10)
cout << “This number is less than 10\n";

else if (amount < 25)
cout << “This number is between 10 and 25\n”;

else if (amount < 40)
cout << “This number is between 25 and 40\n”;

A Better Way… Using switch
Alternative for constructing multi-way branches

Syntax is:
switch (variable)
{
case variable_value1:

statements;
break;

case variable_value2:
statements;
break;

… … …

default:
statements;

}
10/6/2016 Matni, CS16, Fa16 16

Controlling statement

“break” statement is important
– you cannot forget it!

The Controlling Statement
• A switch statement's controlling statement must return one

of these types:
– A bool value
– An enum constant
– An integer type
– A character type

• The value returned is compared to the constant values after
each "case”
– When a match is found, the code for that case is used

• Switch will not work with strings in the controlling
statement.

10/6/2016 Matni, CS16, Fa16 17

Which to Use?
Nested IF/ELSE vs. switch

• Nested IF/ELSE statements are more versatile

• Switch statements can make code easier to read
– Work v. well with “menu types” of applications

10/6/2016 Matni, CS16, Fa16 18

Can I Use Functions Inside
Multiway Branching?

• Yes!
• Using function calls instead of multiple

statements can make the switch or if-else
statement much easier to read

• More on C++ functions in a later lecture…

10/6/2016 Matni, CS16, Fa16 19

Note About Blocks

• A block is a section of code enclosed by braces

• Variables declared within a block, are local to
the block or have the block as their scope.

• Variable names declared in the block cannot
be reused outside the block
– Might not compile in some cases --- SEE DEMO

10/6/2016 Matni, CS16, Fa16 20

Note on Increments:
number++ vs ++number

• (number++) returns the current value of number, then
increments number

• An expression using (number++) will use the value of
number BEFORE it is incremented

• (++number) increments number first and returns the new
value of number

• An expression using (++number) will use the value of
number AFTER it is incremented

• number has the same value after either version!

• Example on the next page…
10/6/2016 Matni, CS16, Fa16 21

Example: number++ vs ++number
int number = 2;
int value_produced = 2 * (number++);
cout << value_produced << " " << number;
• displays 4 3

int number = 2;
int value_produced = 2* (++number);
cout << value_produced << " " number;
• displays 6 3

• In either case, number ends up being 3.
• Works the same way with decrements (-- operator)

10/6/2016 Matni, CS16, Fa16 22

Note on Semicolon Quirks in C++
• Placing a semicolon after nothing creates an empty

statement that compiles but does nothing!
cout << "Hello" << endl;
;
cout << "Good Bye"<< endl;

• Placing a semicolon after the parentheses of a for loop
creates an empty statement as the body of the loop

for(int count = 1; count <= 10; count++);
cout << "Hello\n";

• This prints one "Hello", but not as part of the loop!

10/6/2016 Matni, CS16, Fa16 23

Local vs. Global Variables

• Local variables only work in a specified block of statements

• Global variables work in the entire program

• There are standards to their use
– Local variables are much preferred as global variables can cause

conflicts in the program

• For example, ANSI C++ standard requires that a variable
declared in the for-loop initialization section be local to the
block of the for-loop

10/6/2016 Matni, CS16, Fa16 24

Note on Loop Choices
Recall the differences between while, do-while, and for loops.
The following are recommendations, not necessarily “must-dos”

• while loops are the most versatile: Work for any occasion

• do-while loops are used for when the loop must always run at
least once

• for loops typically used when doing numeric calculations,
especially when using a variable changed by equal amounts
each time the loop iterates.

• If there are circumstance when the loop body should not be
executed at all, use a while loop.

10/6/2016 Matni, CS16, Fa16 25

Can I Use the break Statement
in a Loop?

• Yes, the break statement can be used to exit a
loop before normal termination

• But it’s not good design practice!

• See textbook section 3.3 for details

10/6/2016 Matni, CS16, Fa16 26

TO DOs
• Readings

– The rest of Chapter 3 (i.e 3.4) and Ch. 4, of textbook

• Homework #5
– Due on Tuesday, 10/11 and submit in class
– Has a programming question that requires planning ahead!

• Lab #2
– Due Friday, 10/7, at noon

• Lab #3
– Given out this weekend

10/6/2016 Matni, CS16, Fa16 27

10/6/2016 Matni, CS16, Fa16 28

	Flow Control in C++	2
	Announcements
	Lecture Outline
	Precedence Rules on Operations �in C++
	Applying the Precedence Rule
	Run Time Errors
	Short-Circuit Evaluation
	Boolean and Integer Crossovers in C++
	Potential Trouble With ! Use
	Potential Trouble With ! Use
	Enumeration of Constants�Data Types
	Multiway Branching
	What’s Wrong With This Code?
	Defaults in Nested IF/ELSE Statements
	Simplify This Code
	A Better Way… Using switch
	The Controlling Statement
	Which to Use?�Nested IF/ELSE vs. switch
	Can I Use Functions Inside �Multiway Branching?
	Note About Blocks
	Note on Increments:�number++ vs ++number
	Example: number++ vs ++number
	Note on Semicolon Quirks in C++
	Local vs. Global Variables
	Note on Loop Choices
	Can I Use the break Statement �in a Loop?
	TO DOs
	Slide Number 28

