Pointers

CS 16: Solving Problems with Computers |
Lecture #15

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

* Lab #8 is due on Monday, 11/21 at 8 AM

 Homework #14 is due on Tuesday, 11/22

11/17/2016 Matni, CS16, Fal6

Lecture Outline

CH. 9
 Introduction to Pointers
* Dynamic Arrays

11/17/2016 Matni, CS16, Fal6

Memory Addresses

 Consider the integer variable num that holds
the value 42

1 byte-{

* num is assigned a place in memory. num
In this example the address of that
place in memory is 1F

— Generally, memory addresses use hexadecimals

Address

Data

1D

1E

1F

42

20

21

22

 The address of a variable can be obtained by putting the ampersand

character (&) before the variable name.
— & is called the address-of operator
— Example: num_add = #

will result in num_add to hold the value 1F

11/17/2016 Matni, CS16, Fal6

Memory Address

Recal: num=42 and num_add=&num =1F

Now, let’s make bar = num
— Another variable, bar, now is assigned the same value that’s in num (42)
— Note the difference between bar and num_add

The variable bar will be assigned an address

— Let’s say, that address is 77

— Keep in mind, by default, we have no control over address assignments
e Thisis just for illustrative purposes...

The variable that stores the address of another variable
(like num_add) is what in C++ is called a pointer.

11/17/2016 Matni, CS16, Fal6 5

Dereference Operator (*)

* Pointers “point to” the variable whose address they store
* Pointers can access the variable they point to directly

* Done by preceding the pointer name with the
dereference operator (*)

— The operator itself can be read as “value pointed to by”

‘r‘[Recall: num=42 and num_add = &num = 1F

* So, while num_add = 1F, *num_add =42

11/17/2016 Matni, CS16, Fal6

Pointers

« A pointer is the memory address of a variable

« Memory addresses can be used as names for variables

— |If a variable is stored in three memory locations, the address of
the first can be used as a name for the variable

— When a variable is used as a call-by-reference argument, it's the
actual address in memory that is passed

Pointers Tell Us (or the Compiller)
Where To Find A Variable

* An address that is used to tell where a
variable Is stored in memory Is a pointer

— Pointers "point" to a variable by telling where
the variable is located

int val = 5;
Cnt *otr = &val;)

)
OxFE
\\s 5

—

Ox83 OxHE

Declaring Pointers

Pointer variables must be declared to have a
pointer type

Example: To declare a pointer variable p that
can "point" to a variable of type double:

double *p;

The asterisk (*) identifies p as a pointer variable

Multiple Pointer Declarations

« To declare multiple pointers in a statement, use
the asterisk before each pointer variable

« Example:
int *pl, *p2, vl1l, v2;

Pl and p2 point to variables of type int
vl and v2 are variables of type int

The address-of Operator

 The & operator can be used to determine the
address of a variable which can be assigned to
a pointer variable

« Example: pl = &vi;

plis now a pointer to v1
vl can be called vl

or “the variable pointed to by p1”

Another Note on the
Dereferencing Operator (*)

« C++ uses the * operator in yet another way with
pointers

* The phrase “The variable pointed to by p” Is
translated into C++ as *p

* p Is said to be dereferenced

A Pointer Example

0
&\’/1; | vl and *pl now refer to
*pl = 42; the same variable

cout << vl << endl;
cout << *pl << endl;

output: " E | E]

42

Pointer Assignment

« The assignment operator = is used to assign the value of
one pointer to another

Example: If pl still points to v1 (previous slide) p2 =
then the statement . P
p2=pl;

causes *p2, *p1, and v1 all to name
the same variable

Caution! Pointer Assignments

« Some care Is required making assignments to pointer
variables

pl p3; // changes the location that pl "points"” to

*p3; // changes the value at the location that
// pl "points" to

Uses of the Assignment Operator

on Pointers
pl = p2;
Before: After:
pl - 84 pl 84
p2 =1 99 p2 — 99
pl = *p2
Before: After:
pl 1 84 pl =1 99

p2 = 99 p2 =1 99

The new Operator

« Using pointers, variables can be manipulated even if there is
no identifier for them

« To create a pointer to a new “nameless” variable of type int:
pl = new int;

 The new variable is referred to as *p1

« *pl can be used anyplace an integer variable can
Example:

cin >> *pil;

*pl = *pl + 7;

Dynamic Variables

« Variables created using the new operator are called
dynamic variables

« Dynamic variables are created and destroyed while the
program is running

— We don'’t have to bother with naming them, just their pointers

Basic Pointer Manipulations
//Program to demonstrate pointers and dynamic variables.
#include <iostream>

using namespace std;

int main()

{
int *pl, *p2;
pl = new int;
*pl = 42;
p2 = pl;
cout << "*pl == " << *pl << endl;
cout << "*p2 == " << *p2 << endl;
*p2 = 53;
cout << "*pl == " << *pl << endl;
cout << "*p2 == " << *p2 << endl;
pl = new int;
*pl = 88;
cout << "*pl == " << *pl << endl;
cout << "*p2 == " << *p2 << endl;
cout << "Hope you got the point of this example!\n";
return 0O;

}

Sample Dialogue

*pl == 42
*p2 == 42
*pl == 53
*p2 == 53
*pl == 88
*p2 == 53

Hope you got the point of this example!

Basic Memory Management

« An area of memory called the freestore or the heap is
reserved for dynamic variables
— New dynamic variables use memory in the freestore

— If all of the freestore is used, calls to new will falil
« So you need to manage your unused dynamic variables...

« Unneeded memory can be recycled

— When variables are no longer needed, they can be deleted and
the memory they used is returned to the freestore

The delete Operator

* When dynamic variables are no longer needed,
delete them to return memory to the freestore

« Example:
delete p;

« The value of p Is now undefined and the
memory used by the variable that p pointed to is
back in the freestore

Dangling Pointers

Using delete on a pointer variable destroys the dynamic
variable pointed to

If another pointer variable was pointing to the
dynamic variable, that variable is also now undefined

Undefined pointer variables are called dangling pointers
— Dereferencing a dangling pointer (*p) is usually disastrous

Automatic Variables

« Variables declared in a function are created by C++ and
then destroyed when the function ends

 These are called automatic variables because their
creation and destruction is controlled automatically

 However, the programmer must manually controls
creation and destruction of pointer variables with
operators new and delete

Type Definitions

« A name can be assigned to a type definition, then used
to declare variables

 The keyword typedef is used to define new type names

e Syntax:
typedef Known Type Definition New Type Name;

where, Known_Type Definition can be any type

Defining Pointer Types

« To help avoid mistakes using pointers,
define a pointer type name

« Example: typedef int* IntPtr;

Defines a new type, IntPtr, for pointer
variables containing pointers to int variables

IntPtr p;

IS now equivalent to saying: int *p;

Multiple Declarations Again

« Using our new pointer type defined as
typedef int* IntPtr;

* Prevents error in pointer declaration:

* For example, if you want to declare 2 pointers, instead of this:
int *pl, p2;
// Careful! Only P1 is a pointer variable!

do this:

IntPtr pl, p2;
// pl and p2 are both pointer variables

Pointer Reference Parameters

A second advantage in using typedef to define a pointer
type is seen in parameter lists

« Example:
void sample function(IntPtr& pointer var);

IS less confusing than

void sample function(int*& pointer_var);

Dynamic Arrays

Dynamic Arrays

A dynamic array Is an array whose size is
determined when the program is running,
not when you write the program

Pointer Variables
and Array Variables

* Array variables are actually pointer variables
that point to the first indexed variable

— Remember when calling an array in a function?
* funcA(a) ... not ... funcA(a[])

— Take, for instance:
int af[10];
typedef int* IntPtr;
IntPtr p;

« NOTE: Variables a and p are the same kind of variable

* Since a Is a pointer variable that points to a0],
. P=4 .
causes p to point to the same location as a

Pointer Variables
As Array Variables

« Continuing with the previous example; |*nt al1el;
: : e tvpedef int* IntPtr;
Pointer variable p can be used as if it -

were an array variable
« S0, p[0], p[1], ...p[9] are all legal ways to use p

e Variable a can be used as a pointer variable
except the pointer value in a cannot be changed
— S0, this is not legal:

IntPtr p2; // p2 1is assighed a value
a = p2 // attempt to change a

Arrays and Pointer Variables

//Program to demonstrate that an array variable is a kind of pointer variable.
#include <iostream>

using namespace std;

typedef int* IntPtr;

int main()

{
IntPtr p;
int a[10];
int index;

for (index = 0; index < 10; index++)
alindex] = index;

p=aj;
for (index = 0; index < 10; index++)

cout << plindex] << " ";
cout << endl;

for (index = 0; index < 10; index++)

. N . Note that changes to the
index] = p[index] + 1;
Pl 1=rl] array p are also changes to

. . . the array a.
for (index = 0; index < 10; index++)

cout << afindex] << " ";
cout << endl;

return 0;

}
Output

0123456789
12345678910

Creating Dynamic Arrays

 Normal arrays require that the programmer
determine the size of the array when the
program Is written

— What if the programmer estimates too large?
 Memory is wasted

— What if the programmer estimates too small?
« The program may not work in some situations

« Dynamic arrays can be created with just the
right size while the program is running

Are Dynamic Arrays aka Vectors?!

* Not exactly...
— vector is an implementation of dynamic arrays

 The biggest difference is:

— Vectors automatically increase their capacity
— Dynamic arrays have to do this with new and delete

 The advantage of vectors is that they are well-
defined and you don’t have to worry about size
changes, capacity adjustments in memory, etc...

11/17/2016 Matni, CS16, Fal6

34

Creating Dynamic Arrays

 Dynamic arrays are created using the new operator

« Example:
To create an array of 10 elements of type double:

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

d can now be used as if it were an ordinary array!

Dynamic Arrays (cont.)

Pointer variable d is a pointer to d[0]

When finished with the array, it should be deleted to return
memory to the freestore
— Example: delete [] d;

— The brackets tell C++ that a dynamic array is being deleted so it
must check the size to know how many indexed variables to remove

— Do not forget the brackets!

Display 9.6 in the book has an example of use

Multidimensional Dynamic Arrays

Example: Create a 3x4 multidimensional dynamic array

Recall: view multidimensional arrays as arrays of arrays...
— Soa3x4 array = 3-element array, each of which is a 4-element array

First create a one-dimensional dynamic array

— Start with a new definition:
typedef int* IntArrayPtr;

— Now create a dynamic array of pointers named m:
IntArrayPtr *m = new IntArrayPtr[3];

For each pointer in m, create a dynamic array of int's
for (int i = @0; i < 3; i++)
m[i] = new int[4];

A Multidimensional Dynamic Array

« The dynamic array created on the previous slide

could be visualized like this:

m

“

|

IntArrayPtr *

Int's

«— IntArrayPtr's

Deleting
Multidimensional Arrays

* To delete a multidimensional dynamic array

— Each call to new that created an array must have a
corresponding call to delete]]

— Example: To delete the dynamic array
created on the previous slide:

for (i =0; i < 4; i++)
delete [] m[i]; //delete the arrays of 4 int's
delete [] m; // delete the array of IntArrayPtr's

To Dos

* Homework #13 for Thursday

e Lab #8 for Monday (8AM)
— New Lab #9 will be posted by end of the weekend

11/17/2016 Matni, CS16, Fal6

40

11/17/2016

</LECTURE>

Matni, CS16, Fal6

41

