
Pointers

CS 16: Solving Problems with Computers I
Lecture #15

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Lab #8 is due on Monday, 11/21 at 8 AM

• Homework #14 is due on Tuesday, 11/22

11/17/2016 Matni, CS16, Fa16 2

Lecture Outline

CH. 9

• Introduction to Pointers

• Dynamic Arrays

11/17/2016 Matni, CS16, Fa16 3

Memory Addresses

• Consider the integer variable num that holds
the value 42

• num is assigned a place in memory.
In this example the address of that
place in memory is 1F
– Generally, memory addresses use hexadecimals

• The address of a variable can be obtained by putting the ampersand
character (&) before the variable name.
– & is called the address-of operator

– Example: num_add = #

will result in num_add to hold the value 1F

11/17/2016 Matni, CS16, Fa16 4

Address Data

1D

1E

1F 42

20

21

22

1 byte

num

Memory Address

• Recall: num = 42 and num_add = &num = 1F

• Now, let’s make bar = num
– Another variable, bar, now is assigned the same value that’s in num (42)

– Note the difference between bar and num_add

• The variable bar will be assigned an address
– Let’s say, that address is 77

– Keep in mind, by default, we have no control over address assignments
• This is just for illustrative purposes…

• The variable that stores the address of another variable
(like num_add) is what in C++ is called a pointer.

11/17/2016 Matni, CS16, Fa16 5

Dereference Operator (*)

• Pointers “point to” the variable whose address they store

• Pointers can access the variable they point to directly

• Done by preceding the pointer name with the
dereference operator (*)

– The operator itself can be read as “value pointed to by”

• So, while num_add = 1F, *num_add = 42

11/17/2016 Matni, CS16, Fa16 6

Pointers

• A pointer is the memory address of a variable

• Memory addresses can be used as names for variables

– If a variable is stored in three memory locations, the address of

the first can be used as a name for the variable

– When a variable is used as a call-by-reference argument, it’s the

actual address in memory that is passed

Pointers Tell Us (or the Compiler)

Where To Find A Variable

• An address that is used to tell where a

variable is stored in memory is a pointer

– Pointers "point" to a variable by telling where

the variable is located

Declaring Pointers

• Pointer variables must be declared to have a

pointer type

• Example: To declare a pointer variable p that

can "point" to a variable of type double:

double *p;

• The asterisk (*) identifies p as a pointer variable

Multiple Pointer Declarations

• To declare multiple pointers in a statement, use

the asterisk before each pointer variable

• Example:

int *p1, *p2, v1, v2;

p1 and p2 point to variables of type int

v1 and v2 are variables of type int

The address-of Operator

• The & operator can be used to determine the

address of a variable which can be assigned to

a pointer variable

• Example: p1 = &v1;

p1 is now a pointer to v1

v1 can be called v1

or “the variable pointed to by p1”

Another Note on the

Dereferencing Operator (*)

• C++ uses the * operator in yet another way with

pointers

• The phrase “The variable pointed to by p” is

translated into C++ as *p

• p is said to be dereferenced

A Pointer Example

v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

output:
42

42

v1 and *p1 now refer to

the same variable

0

v1 p1

42

v1 p1

Pointer Assignment

• The assignment operator = is used to assign the value of

one pointer to another

Example: If p1 still points to v1 (previous slide)

then the statement

p2 = p1;

causes *p2, *p1, and v1 all to name

the same variable

42

v1 p1
p2 =

Caution! Pointer Assignments

• Some care is required making assignments to pointer

variables

p1 = p3; // changes the location that p1 "points" to

*p1 = *p3; // changes the value at the location that
// p1 "points" to

Uses of the Assignment Operator

on Pointers

The new Operator

• Using pointers, variables can be manipulated even if there is
no identifier for them

• To create a pointer to a new “nameless” variable of type int:
p1 = new int;

• The new variable is referred to as *p1

• *p1 can be used anyplace an integer variable can

Example:

cin >> *p1;
*p1 = *p1 + 7;

Dynamic Variables

• Variables created using the new operator are called

dynamic variables

• Dynamic variables are created and destroyed while the

program is running
– We don’t have to bother with naming them, just their pointers

42p1

p2

53

88

Basic Memory Management

• An area of memory called the freestore or the heap is

reserved for dynamic variables

– New dynamic variables use memory in the freestore

– If all of the freestore is used, calls to new will fail

• So you need to manage your unused dynamic variables…

• Unneeded memory can be recycled

– When variables are no longer needed, they can be deleted and

the memory they used is returned to the freestore

The delete Operator

• When dynamic variables are no longer needed,

delete them to return memory to the freestore

• Example:

delete p;

• The value of p is now undefined and the

memory used by the variable that p pointed to is

back in the freestore

Dangling Pointers

• Using delete on a pointer variable destroys the dynamic

variable pointed to

• If another pointer variable was pointing to the

dynamic variable, that variable is also now undefined

• Undefined pointer variables are called dangling pointers

– Dereferencing a dangling pointer (*p) is usually disastrous

Automatic Variables

• Variables declared in a function are created by C++ and

then destroyed when the function ends

• These are called automatic variables because their

creation and destruction is controlled automatically

• However, the programmer must manually controls

creation and destruction of pointer variables with

operators new and delete

Type Definitions

• A name can be assigned to a type definition, then used

to declare variables

• The keyword typedef is used to define new type names

• Syntax:
typedef Known_Type_Definition New_Type_Name;

where, Known_Type_Definition can be any type

Defining Pointer Types

• To help avoid mistakes using pointers,

define a pointer type name

• Example: typedef int* IntPtr;

Defines a new type, IntPtr, for pointer

variables containing pointers to int variables

IntPtr p;

is now equivalent to saying: int *p;

Multiple Declarations Again

• Using our new pointer type defined as

typedef int* IntPtr;

• Prevents error in pointer declaration:

• For example, if you want to declare 2 pointers, instead of this:

int *p1, p2;
// Careful! Only P1 is a pointer variable!

do this:

IntPtr p1, p2;
// p1 and p2 are both pointer variables

Pointer Reference Parameters

• A second advantage in using typedef to define a pointer

type is seen in parameter lists

• Example:

void sample_function(IntPtr& pointer_var);

is less confusing than

void sample_function(int*& pointer_var);

Dynamic Arrays

Dynamic Arrays

A dynamic array is an array whose size is

determined when the program is running,

not when you write the program

Pointer Variables

and Array Variables
• Array variables are actually pointer variables

that point to the first indexed variable
– Remember when calling an array in a function?

• funcA(a) … not … funcA(a[])

– Take, for instance:
int a[10];
typedef int* IntPtr;
IntPtr p;

• NOTE: Variables a and p are the same kind of variable

• Since a is a pointer variable that points to a[0],
p = a;

causes p to point to the same location as a

Pointer Variables

As Array Variables

• Continuing with the previous example:

Pointer variable p can be used as if it

were an array variable

• So, p[0], p[1], …p[9] are all legal ways to use p

• Variable a can be used as a pointer variable

except the pointer value in a cannot be changed

– So, this is not legal:

IntPtr p2; // p2 is assigned a value
a = p2 // attempt to change a

0 1 2 9…a

0 1 2 9
p

1 2 3 10…a

0 1 2 9p

Creating Dynamic Arrays

• Normal arrays require that the programmer

determine the size of the array when the

program is written

– What if the programmer estimates too large?

• Memory is wasted

– What if the programmer estimates too small?

• The program may not work in some situations

• Dynamic arrays can be created with just the

right size while the program is running

Are Dynamic Arrays aka Vectors?!

• Not exactly…
– vector is an implementation of dynamic arrays

• The biggest difference is:
– Vectors automatically increase their capacity

– Dynamic arrays have to do this with new and delete

• The advantage of vectors is that they are well-
defined and you don’t have to worry about size
changes, capacity adjustments in memory, etc…

11/17/2016 Matni, CS16, Fa16 34

Creating Dynamic Arrays

• Dynamic arrays are created using the new operator

• Example:

To create an array of 10 elements of type double:

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

d can now be used as if it were an ordinary array!

Dynamic Arrays (cont.)

• Pointer variable d is a pointer to d[0]

• When finished with the array, it should be deleted to return

memory to the freestore

– Example: delete [] d;

– The brackets tell C++ that a dynamic array is being deleted so it

must check the size to know how many indexed variables to remove

– Do not forget the brackets!

• Display 9.6 in the book has an example of use

Multidimensional Dynamic Arrays

• Example: Create a 3x4 multidimensional dynamic array

• Recall: view multidimensional arrays as arrays of arrays…
– So a 3x4 array = 3-element array, each of which is a 4-element array

• First create a one-dimensional dynamic array

– Start with a new definition:
typedef int* IntArrayPtr;

– Now create a dynamic array of pointers named m:
IntArrayPtr *m = new IntArrayPtr[3];

• For each pointer in m, create a dynamic array of int's

for (int i = 0; i < 3; i++)
m[i] = new int[4];

• The dynamic array created on the previous slide

could be visualized like this:

A Multidimensional Dynamic Array

m
IntArrayPtr's

int's

IntArrayPtr *

Deleting

Multidimensional Arrays

• To delete a multidimensional dynamic array

– Each call to new that created an array must have a

corresponding call to delete[]

– Example: To delete the dynamic array

created on the previous slide:

for (i = 0; i < 4; i++)
delete [] m[i]; //delete the arrays of 4 int's

delete [] m; // delete the array of IntArrayPtr's

To Dos

• Homework #13 for Thursday

• Lab #8 for Monday (8AM)

– New Lab #9 will be posted by end of the weekend

11/17/2016 Matni, CS16, Fa16 40

11/17/2016 Matni, CS16, Fa16 41

