More on Arrays

CS 16: Solving Problems with Computers |
Lecture #13

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

e Homework #12 due today
* No homework assigned today!! ©
* Lab #7 is due on Monday, 11/14 at 8 AM

e Midterm #2 is this Thursday in class

11/9/2016 Matni, CS16, Fal6

Midterm 2

Material to Review:

e Lectures: Start at lecture #7, end at lecture #13
e Book Sections: Chapters 5, 6, 7, 8.1, 8.2, 8.3 (maybe?)
e Homework: Start at HW6, end at HW13

e Llabs: Lab4, Lab5, Lab6

Covers:

* Functions

e |/O Streams (including command line inputs)

e Binary, Decimal, Octal, Hexadecimal Conversions
e Characters and Strings

 Arrays

e Vectors (if we get to it in time)

11/9/2016 Matni, CS16, Fal6

MIDTERM 2 1S COMING!

 Thursday, 11/10 in this classroom
e Starts at 2:00pm **SHARP**

e | will chose where you sit!

e Duration: 1 hour long

YOU KNOW NOTHING
JON SNOW

e Closed book: no calculators, no phones, no computers
e Only 1 sheet (single-sided) of written notes

— Must be no bigger than 8.5” x 11”

— You have to turn it in with the exam

* You will write your answers on the exam sheet itself.
11/9/2016 Matni, CS16, Fal6

Lecture Outline

* Programming with Arrays

e Multidimensional Arrays

e Lab 7 Questions

11/9/2016 Matni, CS16, Fal6

Programming With Arrays

 The size needed for an array is changeable
— Often varies from one run of a program to another
— Size is often not known when the program is written

e A common solution to the size problem:
— Declare the array size to be the largest that could be needed

— Decide how to deal with partially filled arrays
e Example forthcoming...

Partially Filled Arrays

e When using arrays that are partially filled...

— Functions dealing with the array may not need to
know the declared size of the array,
only how many elements are stored in the array

— A parameter, , may be sufficient to
ensure that referenced index values are legal

#include <iostreams
const int MAX_NUMBER_SCORES = 10;

void fill_array(int a[], int size, int& number_used);

double compute_average(const int a[], int number_used);

void show_difference(const int a[], int number_used);
int main()
{

using namespace std;

int score[MAX_NUMBER_SCORES], number_used;

cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";

cout << "Enter golf scores:\n";
fill_array(score, MAX_NUMBER_SCORES, number_used);
show_difference(score, number_used);

return 0;

}

//Uses iostream:
void fill_array(int a[], int size, int& number_used)
{
using namespace std;
cout << "Enter up to " << size << " nonnegative whale numbers.\n"
<< "Mark the end of the Tist with a negative number.\n";

int next, index = 0;
cin >> next;

while ((next >= 0) && (index < size))

{
a[index] = next;
index++;
cin >> next;

}

number_used = index;

double compute_average(const int a[], int number used)

{

}

double total = 0;

for (int index = 0; index < number_used; index++)

total = total + a[index];
if (number_used > 0)

{
return (total/number _used);
}
else
{
using namespace std;
cout << "ERROR: number of elements
<< "compute_average returns 0.
return 0;
}

is 0 in compute_average.\n"

\n";

void show_difference(const int a[], int number_used)

{

using namespace std;

double average =

cout << "Average of the
<< " scores = " << average << end]
<< "The scores are:\n";

compute_average(a, number_used);
<< number_used

for (int index = 0; index < number_used; index++)
cout << a[index] << " differs from average by "

<< (a[index] - average) << endl;

Your textbook, Ch. 7

Display 7.9

Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the Tist with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

Constants as Arguments

e When function fill_array (Display 7.9) is called,
MAX NUMBER_SCORES is used as an
argument

— Can't MAX_NUMBER_SCORES be used directly
without making it an argument?

e Using MAX_NUMBER_SCORES as an argument makes it
clear that fill _array requires the array's declared size

* This makes fill _array easier to be used in other
programs

11/9/2016

Matni, CS16, Fal6

12

Searching Arrays

* A sequential search is one way to search
an array for a given value

— Look at each element from first to last to see if the
target value is equal to any of the array elements

— The index of the target value can be returned to
indicate where the value was found in the array

— A value of -1 can be returned if the value was not
found

Sequential Search

Task: Search the array for “ff”

a|bf|23|3a|32|jk|89|90|33naa| 1 I 2

ARRAY a[]: a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12]

11/9/2016

Matni, CS16, Fal6

14

Example search Function

(See Display 7.10 in the textbook)

e Uses a while loop to compare array elements to
the target value

e Sets a variable of type bool to true if the target
value is found, ending the loop

 Checks the bool variable when the loop ends to
see if the target value was found

 Returns the index of the target value if found,
otherwise returns -1

Searching an Array (part 1 of 2) Searching an Array (part 2 of 2)

//Searches a partially filled array of nonnegative integers. //Uses iostream:
#include <iostream> void fill_array(int a[], int size, int& number_used)
const int DECLARED_SIZE = 20; <The rest of the definition of fi11_array is given in Display 10.9.>

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a. {
//af0] through a[number_used-1] have been filled with .)
//nonnegative integers read from the keyboard. int index = 0;
bool found = false;
while ((!found) && (index < number_used))
if (target == a[index])
found = true;

int search(const int a[], int number_used, int target)

int search(const int al[], int number_used, int target);
//Precondition: number_used 15 <= the declared size of a.
//Also, a[0] through a[number_used -1] have values.

//Returns the first index such that a[index] == target,
//provided there is such an index; otherwise, returns -1. else
index++;
int main()
{) if (found)
using namespace std; return index:
int arr[DECLARED_SIZE], Tlist_size, target;] !
else
fi1l_array(arr, DECLARED_SIZE, Tlist_size); return -1;
char ans; }
int result; Sample Dialogue
do
{

Enter up to 20 nonnegative whole numbers.

Mark the end of the Tlist with a negative number.
10 20 30 40 50 60 70 80 -1

Enter a number to search for: 10

cout << "Enter a number to search for: ";
cin >> target;

result = search(arr, Tist_size, target);

7f (result == -1) . , 10 is stored in array position 0
cout << target << " 1is not on the Tist.\n"; . O o
else (Remember: The first position is 0.)
.o .
cout << target << " is stored in array position " Search again?(y/n followed by Return):y
<< result << end] Enter a number to search for: 40
<< "(Remember: The first position is 0.)\n"; 40 is stored in array position 3

. (Remember: The first position is 0.)
cout << "Search again?(y/n followed by Return): "; S, .
cin >> ans; Search again?(y/n followed by Return):y

Iwhile ((ans '= 'n’) && (ans != *N')): Enter a number to search for: 42

42 1is not on the list.

Search again?(y/n followed by Return): n
End of program.

cout << "End of program.\n";
return 0Q;

11/9/2016

DEMO

Matni, CS16, Fal6

17

Program Example:
Sorting an Array

e Sorting a list of values is very common task
— Create an alphabetical listing
— Create a list of values in ascending order
— Create a list of values in descending order

e Many sorting algorithms exist
— Some are very efficient

— Some are easier to understand

Program Example:
The Selection Sort Algorithm

* When the sort is complete, the elements of the
array are ordered such that

a[0] < a[1] < ... <a [number_used -1]

 This leads to an outline of an algorithm:
for (int index = 0; index < number_used; index++)
place the indext" smallest element in a[index]

Program Example:
Sort Algorithm Development

(See Display 7.10 in the textbook)

One array is sufficient to do our sorting
Search for the smallest value in the array

Place this value in a[0], and place the value that was in
al0] in the location where the smallest was found

— i.e. swap them
Starting at a[1], find the smallest remaining value swap it
with the value currently in a[1]

Starting at a[2], continue the process until the array is
sorted

Sort from smallest to largest

Selection Sort

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 | 14 | 12 | 20

/ \
2 6 10 8 16 4 18 14 12 20
\ _/

2 4 10 8 16 6 18 | 14 | 12 | 20

DISPLAY 7.12 Sorting an Array (part I of 2)

DISPLAY 7.12 Sorting an Array (part 2 of 2)

Wo ~Nou fow M

//Tests the procedure sort.
#include <iostream>

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//al@] through al[number_used — 1] have been filled with
//nonnegative integers read from the keyboard.

void sort(int a[], int number_used);

//Precondition: number_used <= declared size of the array a.

//The array elements a[0] through a[number_used — 1] have values.
//Postcondition: The values of a[@] through alnumber_used — 1] have

38 for (int index = 0; index < number_used — 1; index++)

39 {//Place the correct value in a[index]:

40 index_of_next_smallest =

41 index_of_smallest{a, index, number_used);

42 swap_values(a[index], al[index_of_next_smallest]);

43 J/al@] <= a[l] <=...<= a[index] are the smallest of the original array
44 //elements. The rest of the elements are in the remaining positions.
45 }

46 }

47

48 void swap_values(int& vl, int& v2)

//been rearranged so that af@] <= a[l] <= ... <= a[number_used — 1]. 49 {
. . . 50 int temp;
void swap_values(int& vl, int& v2); 51 temp = v1;
//Interchanges the values of vl and v2. 52 vl = v2: ’
=]
int index_of_smallest(const int a[l, int start_index, int number_used); 53 v2 = temp;
//Precondition: @ <= start_index < number_used. Referenced array elemer 54 }
//values. 55
//Returns the index i such that a[i] is the smallest of the values) .
77alstart_index], olstart index + 11, ..., alnusber_used — 1J. gg ;nt index_of_smallest(const int a[], int start_index, int number_used)
int main() 58 int min = a[start_index],
{ _ 59 index_of_min = start_index;
using namespace std; 60 for (int index = start_index + 1; index < number_used; index++)
cout << "This program sorts numbers from lowest to highest.\n"; 61 if (a[index] < min)
int sample_array[10], number_used; 62 {))
fill_array(sample_array, 10, number_used); 63 min = a[ln?ex];.
sort(sample_array, number_used); 64 index_of_min = index;
65 //min is the smallest of afstart_index] through a[index]
cout << "In sorted order the numbers are:\n"; 66 }
for (int index = 0; index < number_used; index++) 67
cout << sample_array[index] << ; 68 return index_of_min:
cout << endl;
69 }
return 0;
}

//Uses iostream:
void fill_array(int a[], int size, int& number_used)

void sort(int a[], int number_used)

{

int index_of_next_smallest;

<The rest of the definition of fill_array is given in Display 7.9.>

(co

Sample Dialogue

This program sorts numbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

Multi-Dimensional Arrays

e C++ allows arrays with multiple index values

— char page [30] [100];
declares an array of characters named page

e page has two index values:
The first ranges from 0 to 29
The second ranges from 0 to 99

— Each index in enclosed in its own brackets

— Page can be visualized as an array of
30 rows and 100 columns

Index Values of page

e The indexed variables for array page are
page[0][0], page[0][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]

page[29][0], page[29][1], ..., page[29][99]

e page is actually an array of size 30

— page's base type is an array of 100 characters

Multidimensional Array Parameters

e Recall that the size of an array is not needed
when declaring a formal parameter:

void display line(char a[], int size);

 The base type of a multi-dimensional array must
be completely specified in the parameter

declaration

void display page(char page[] [100],
int size dimension_1);

Program Example:

Grading Program

Grade records for a class can be stored in a
two-dimensional array

— For a class with 4 students and 3 quizzes the array could be
declared as

int grade[4][3];
e The first array index refers to the number of a student
e The second array index refers to a quiz number

Since student and quiz numbers start with one,
we subtract one to obtain the correct index

Your textbook, Ch. 7, Display 7.14 has an example

The Two-Dimensional Array grade

student i
student 2
student 3

student 4

grade[3] [0] /s the
grade that student 4
received on quiz I.

L quiz |

— quiz 2

L quiz 3

grade[0] [0]

grade[0] [1]

grade[0] [2]

grade[1] [0]

grade[1] [1]

grade[1][2]

_| grade[2][0]

garde[2] [1]

grade[2] [2]

_| grade[3][0]

grade[3][1]

grade[3][2]

grade[3][1] /s the
grade that student 4

received on quiz 2.

grade[3][2] /s the
grade that student 4
received on quiz 3.

11/9/2016

Matni, CS16, Fal6

28

11/9/2016

</LECTURE>

Matni, CS16, Fal6

29

Lab 7

e Partner-up (optional)

 Both exercises deal with 2-D arrays

11/9/2016 Matni, CS16, Fal6

30

	More on Arrays
	Announcements
	Midterm 2
	MIDTERM 2 IS COMING!
	Lecture Outline
	Slide Number 6
	Programming With Arrays
	Partially Filled Arrays
	Slide Number 9
	Slide Number 10
	Constants as Arguments
	Slide Number 12
	Searching Arrays
	Slide Number 14
	Example search Function
	Slide Number 16
	Slide Number 17
	Program Example:�Sorting an Array
	Program Example:�The Selection Sort Algorithm
	Program Example:� Sort Algorithm Development
	Sort from smallest to largest
	Slide Number 22
	Slide Number 23
	Multi-Dimensional Arrays
	Index Values of page
	Multidimensional Array Parameters
	Program Example:�Grading Program
	Slide Number 28
	Slide Number 29
	Lab 7

