
Review of How to Solve a Problem in C++

Arrays

CS 16: Solving Problems with Computers I
Lecture #12

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Homework #11 due today

• Lab #6 is due on Friday at Noon
– Lab #7 will be due on Monday, 11/14 at 8 AM

• Grades:
– Homework 1 thru 7 are up

– Midterm 1 will be up by end of today
• To review exam, please go to the designated TA’s office hours

(see next page)

• Midterm 2 is in 1 week: Thursday, 11/10

11/4/2016 Matni, CS16, Fa16 2

Midterm 1

• Average = 90
– Niiiiiiiiice

• When grades will be posted, I will announce them via mass
email to class (thru Gauchospace)

• You’ll see a letter next to your grade under “Version”:
A, B, C, D
– This isn’t your letter grade! 
– This will tell you which TA has your exam

• You may view and discuss exams with your TAs or myself, but
you may not take the exams anywhere.

11/4/2016 Matni, CS16, Fa16 3

Midterm 2

Material to Review:
• Lectures: Start at lecture #7, end at lecture #13
• Book Sections: Chapters 5, 6, 7, 8.1, 8.2, 8.3 (maybe?)
• Homework: Start at HW6, end at HW13
• Labs: Lab4, Lab5, Lab6

Covers:
• Functions
• I/O Streams (including command line inputs)
• Binary, Decimal, Octal, Hexadecimal Conversions
• Characters and Strings
• Arrays
• Vectors (if we get to it in time)

11/4/2016 Matni, CS16, Fa16 4

Lecture Outline

• Review of Lab 6 Problems

– Focusing on one of them

• Introduction to Arrays (Ch. 7)

• Arrays in Functions

• Algorithmic Designs with Arrays

11/4/2016 Matni, CS16, Fa16 5

Lab 6

• stddev.cpp 20 pts
– Get numbers (double) inputs from a file

– Calculate:

• operators.cpp 40 pts
– Read a file with “bad” cin and cout uses

– Write a file with all lines from original, only with fixes

• binconverter.cpp 40 pts

11/4/2016 Matni, CS16, Fa16 6

binconverter

Requirements:

• Get inputs from a file with binary numbers

• Output conversion to
decimal, hexadecimal, and octal numbers.

• Let’s come up with a plan…

11/4/2016 Matni, CS16, Fa16 7

High Level View

DON’T THINK IN C++ JUST YET!

THIS IS A PROBLEM TO SOLVE!

SO BREAK IT DOWN! DIVIDE AND CONQUER!

1. Get binary number from file

2. Convert to decimal

3. Convert to octal

4. Convert to hexadecimal

5. Show outputs

6. Profit?!

11/4/2016 Matni, CS16, Fa16 8

1. Get binary number

A. Define ifstream variable

B. Get filename from user

C. Open input file

a) Check to see that no errors occur

D. Read in the binary number as a string

E. Send on to Part 2

11/4/2016 Matni, CS16, Fa16 9

2. Convert to decimal

A. How do I convert bin  dec?

a) Position Notation!

b0x20 + b1x21 + b2x22 + … + bnx2n

(it’s a sum of products)

B. Read in one bit (i.e. character) at a time

C. Multiply by the appropriate 2n value

a) 1 x 2 , 1 x 8, 1 x 16

D. Add up all the products

a) I get 25

11/4/2016 Matni, CS16, Fa16 10

1 1 0 1 0

24 23 22 21 20

Example:

3. Convert to octal

A. How do I convert bin  octal?

a) Collect 3 bits at a time!

b) Remember: start from the LSB

B. In this example, collection is: 1 1 & 0 1 0

C. Convert those to a decimal number

a) We did this function already!!!

b) Recall: All symbols in octal exist in decimal as well

D. Put the new converted numbers side by side

a) I get 32.

11/4/2016 Matni, CS16, Fa16 11

1 1 0 1 0

Example:

4. Convert to hex

A. How do I convert bin  hex?

a) Collect 4 bits at a time!

B. In this example, collection is: 1 & 1 0 1 0

C. Convert those to a decimal number

a) We did this function already!!!

b) Recall: Symbols in hex encompass decimal symbol + 6 others

D. Put the new converted numbers side by side

a) I get 1 and 10, but I know that 10 in hex is A, so…

b) I actually get 1A.

11/4/2016 Matni, CS16, Fa16 12

1 1 0 1 0

Example:

5. Show outputs

A. Requirement is to output to screen

a) Easy-peasy

11/4/2016 Matni, CS16, Fa16 13

NOW… Think in C++

• Look at your plan/pseudocode

• For each entry think of

– How you’ll code it

– How you’ll put in the requirements

– How you’ll test it

11/4/2016 Matni, CS16, Fa16 14

How/When to Use
the Required Functions

string.length()
• Useful in

determining
how many loops a for/while statement should have

string[n]
• What if you wanted to get a certain character from a

string and make some calculations or decisions based on
its value?

• But a “string[n]” is a character type. How can one use
this data as a number instead??

11/4/2016 Matni, CS16, Fa16 15

How/When to Use
the Required Functions

int (char c)

• One way to
convert a char
to an int is to use this device.
– This is not the only way: you can use static_cast<int> too

– But I want you to learn an additional way of doing this…

• Note that in C++, int (char c) returns the integer value of
the ASCII code of (char c).
– Exampe, int(‘2’) = 50

• So how can one work with that?

11/4/2016 Matni, CS16, Fa16 16

How/When to Use
the Required Functions

int (char c)

• Look at the
example of
int(‘2’) = 50

• Note that int(‘0’) = 48

• Note again that int(‘2’) – int(‘0’) = 2 !!!!

– I now have the numerical character’s integer value!

• So, if I have a (char c) that is a numerical character, and I do this:
cnum = int (char c) – 48
OR EVEN
cnum = c – ‘0’
I’ll get the numerical value of (char c)!

11/4/2016 Matni, CS16, Fa16 17

Try it out…

• Try out this code snippet to test out this idea
(and convince yourself that it works…!)

int c1, c2;

char c = ‘5’;

c1 = int(c) - int(‘0’);

c2 = c – ‘0’;

cout << “c1 = int(c) - int(‘0’) = ” << c1 << endl;

cout << “c2 = c – ‘0’ = ” << c2 << endl;

11/4/2016 Matni, CS16, Fa16 18

You should see 5 printed out on both lines

How/When to Use
the Required Functions

to_string(int i)

• Convenient for those times when you’re switching between an
integer calculation result and you want it to be a string…

• Pro-tip: some older compliers handle to_string() strangely…
– Sometimes they want you to use std::to_string(), sometimes not.

– Get into the habit of always compiling your code with the –std=c++11
option when using g++: it’s consistent in my experience.

11/4/2016 Matni, CS16, Fa16 19

And a Word From Linux…

Some of you are having issues transferring files between CSIL & your computers.

Here’s the simplest way to do it:

• Open a Linux terminal window on your computer

• Issue the command:
scp <File on your computer> <username>@csil.cs.ucsb.edu:<dir. on CSIL>

EXAMPLE:

scp ./cs16/myProgram.cpp jimbo123@csil.cs.ucsb.edu:~jimbo/cs16/

– You have now copied your local file to a remote server (CSIL)!

• OR, to do it the other way around:
scp jimbo123@csil.cs.ucsb.edu:~jimbo/cs16/myProgram.cpp ./cs16/

– You have now copied your local file to a remote server (CSIL)!

11/4/2016 Matni, CS16, Fa16 20

Mac OS vs Windows OS

11/4/2016 Matni, CS16, Fa16 21

• Macs has a built-in
Linux terminal app

• Windows 10 machines has one too
– But you have to set it up first

– Mac has a nicer “look and feel”,
unfortunately

• Windows 8 & 7 DO NOT have this
– Recommend you download a program

like Bitvise SSH (works very well)

– Can also be used on Windows 10

ARRAYS

11/4/2016 Matni, CS16, Fa16 22

Introduction to Arrays

• An array is used to process a collection of data
of the same type

– Examples: A list of names
A list of temperatures

• Why do we need arrays?

– Imagine keeping track of 1000 test scores in memory!
• How would you name all the variables?

• How would you process each of the variables?

Declaring an Array

• An array, named score, containing five variables of type
int can be declared as

int score[5];

• This is like declaring 5 variables of type int:
score[0], score[1], … , score[4]

• The value in brackets is called
– A subscript or an index

• Note the size of the array is the highest index value + 1
– Because indexing in C++ starts at 0, not 1

Array Variable Types

• An array can have indexed variables of
any type – they all just have to be the SAME type

• Use an indexed variable the same way an “ordinary”
variable of the base type would be

• The square brackets [] hold the index

– Can only be an integer number between 0 and (size – 1)
• Can also be a variable that represents an integer number…

Indexed Variable Assignment

• To assign a value to an indexed variable, use
the assignment operator
(just like with other variables):

int n = 2;
score[n + 1] = 99;

– In this example, variable score[3] is assigned 99

Loops And Arrays

• for-loops are commonly used to step through arrays

Example:

for (i = 0; i < 5; i++)
cout << score[i] << " off by "

<< (max – score[i]) << endl;

could display the difference between each score and
the maximum score stored in an array

First index is 0 Last index is (size – 1)

Constants and Arrays

• Use constants to declare the size of an array
– Using a constant allows your code to be easily

altered for use on a smaller or larger set of data

Example:
const int NUMBER_OF_STUDENTS = 50;
int score[NUMBER_OF_STUDENTS];

…
for (int i = 0; i < NUMBER_OF_STUDENTS; i++)

cout << score[i] << " off by "
<< (max – score[i]) << endl;

– To make this code work for any number of students, simply
change the value of the constant in the 1st line…

Variables and Declarations

• Most compilers do not allow the use of a variable
to declare the size of an array

Example: cout << "Enter number of students: ";
cin >> number;
int score[number];

• This code is illegal on many C++ compilers

• Later we will take a look at dynamic arrays which
do support this concept

Array Declaration Syntax

• To declare an array, use the syntax:
Type_Name Array_Name[Declared_Size];

– Type_Name can be any type

– Declared_Size can be a constant to make your
program more versatile

– Example: int scores[200] or char letters[26]

• Once declared, an array contains the indexed variables:
Array_Name[0] to Array_Name[Declared_Size -1]

Computer Memory

• Computer memory consists of numbered
locations in bytes (i.e. 8 bits at a time)

– A byte's number is its address

• A simple variable is stored in consecutive bytes

– The number of bytes depends on the variable's type

– Example: int will have fewer bytes than long int types

• A variable's address is the address of its first byte

Arrays and Memory

• Declaring the array int a[6]
– Reserves memory for six variables of type int

– The variables are stored one after another

– The address of a[0] is remembered
• The addresses of the other indexed variables is not

remembered (no need to)

– To determine the address of a[3]
• Start at a[0]

• Count past enough memory for three integers to find
a[3]

11/4/2016 Matni, CS16, Fa16 33

Array Index Out of Range

• A common error is using a nonexistent index

– Index values for int a[6] are the values
0 through 5

– An index value that’s not allowed by the array
declaration is out of range

– Using an out of range index value does not
produce an error message!

Out of Range Problems

• If an array is declared as: int a[6];

and an integer is declared as: int i = 7;

• Executing the statement: a[i] = 238;

causes…

– The computer to calculate the address of the illegal a[7]

• This address could be where some other variable is stored

– The value 238 is stored at the address calculated for a[7]

– No warning is given!

• This is bad practice! Keep track of your arrays!

Initializing Arrays

• To initialize an array when it is declared
– The values for the indexed variables are enclosed

in braces and separated by commas

• Example: int children[3] = {2, 12, 1};

Is equivalent to:
int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

Default Values

• If too few values are listed in an initialization statement
– The listed values are used to initialize the

first of the indexed variables
– The remaining indexed variables

are initialized to a zero of the base type

• Example: int a[10] = {5, 5};
initializes a[0] and a[1] to 5
and a[2] through a[9] to 0

NOTE: This is called an extended initializer list and it only
works in the latest versions of C++ compilers. So make sure you
compile with the –std=c++11 option when using g++.

Is this OK?
int num[] = {0, 0, 0};

• When an array is initialized, C++ allows you to leave the
square brackets empty []

• In this case, the compiler will assume automatically a size
for the array that matches the number of values included
between the braces { }

• So, the example given here makes the array num
automatically size 3.

• This shortcut is ok for initializing small arrays, but imagine if
num is size 300 instead…!

11/4/2016 Matni, CS16, Fa16 38

Un-initialized Arrays

• If no values are listed in the array declaration,
some compilers might initialize each variable to a
zero of the base type
– DO NOT DEPEND ON THIS!!

• g++ does not do this, FYI…

• Lesson learned:
Initialize your array variables for the same
reasons you initialize your “regular” variables

Range-Based For Loops

• C++11 includes a new type of for loop:
the range-based for-loop, that simplifies iteration
over every element in an array. The syntax is
shown below:

for (datatype varname : array)
{

// varname is successively set to each

// element in the array
}

Range-Based For Loop Example

• The following code outputs: 2 4 6 8

int arr[] = {2, 4, 6, 8};

for (int x : arr) {

cout << x;

cout << “ ”; }

Arrays in Functions

• Indexed variables can be arguments to functions

• Example:
If a program contains these declarations:

int i, n, a[10];
void my_function(int n);

Variables a[0] through a[9] are of type int, making
these calls legal:

my_function(a[0]);
my_function(a[3]);
my_function(a[i]);

Arrays as Function Arguments

• A formal parameter can be for an entire array

• Such a parameter is called an array parameter

– It is not a call-by-value parameter

– It is not a call-by-reference parameter

– Although, array parameters behave much like
call-by-reference parameters

Array Parameter Declaration

• An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[], int size);

Function Calls With Arrays

• If function fill_up is declared in this way:
void fill_up(int a[], int size);

• and array score is declared this way:
int score[5], number_of_scores;

• fill_up is called in this way:
fill_up(score, number_of_scores);

11/4/2016 Matni, CS16, Fa16 47

Function Call Details

• A formal parameter is identified as an array
parameter by the []'s with no index expression

void fill_up(int a[], int size);

• An array argument does not use the []'s

fill_up(score, number_of_scores);

• Note that the values of the indexed variables can be
changed by the function

Function Description

Function Call

Array Argument Details

• What does the computer know about an array?

– The base type

– The address of the first indexed variable

– The number of indexed variables

• What does a function know about an array argument?

– The base type

– The address of the first indexed variable

Array Parameter Considerations

• Because a function does not know the size of
an array argument…

– The programmer should include a formal
parameter that specifies the size of the array

– The function can process arrays of various sizes

• Function fill_up from Display 7.4 on pg. 392 of the
textbook can be used to fill an array of any size:

fill_up(score, 5);
fill_up(time, 10);

But… IS there a way to CALCULATE the
Size of an Array?

• Yes

• More on that later…

• For now, get used to the idea of passing the
size of an array into a function that has the
array as argument.

11/4/2016 Matni, CS16, Fa16 51

const Modifier

• Array parameters allow a function to change the values
stored in the array argument

• If a function should not change the values of the array
argument, use the modifier const

• An array parameter modified with const is a
constant array parameter
– Example:

void show_the_world(const int a[], int size);

Using const With Arrays

• If const is used to modify an array parameter:

– const is used in both the function declaration and
definition to modify the array parameter

– The compiler will issue an error if you write code
that changes the values stored in the array
parameter

Function Calls and const

• If a function with a constant array parameter
calls another function using the const array
parameter as an argument…

– The called function must use a constant
array parameter as a placeholder for the array

– The compiler will issue an error if a function is
called that does not have a const array parameter
to accept the array argument

const Parameters Example

double compute_average(int a[], int size);

void show_difference(const int a[], int size)
{

double average = compute_average(a, size);
…

}

• compute_average has no constant array parameter

• This code generates an error message because
compute_average could change the array parameter

Returning An Array

• Recall that functions can return a value of
type int, double, char, …, or a class type

• Functions cannot return arrays

• We learn later how to return
a pointer to an array

11/4/2016 Matni, CS16, Fa16 57

TO DOs

• Homework #12 due Tuesday 11/1

• Lab #6

– Due Friday, 11/4, at noon

11/4/2016 Matni, CS16, Fa16 58

11/4/2016 Matni, CS16, Fa16 59

