
Tools for I/O
String & Character Manipulators

CS 16: Solving Problems with Computers I
Lecture #11

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Homework #10 due today

• Lab #6 is due on Friday at Noon

11/2/2016 Matni, CS16, Fa16 2

Lecture Outline

• Formatting output

• Character manipulators

• Character I/O

• String manipulators

11/2/2016 Matni, CS16, Fa16 3

Tools for Stream I/O

• Formatting a program’s output:

– The spaces between items

– The number of digits after a decimal point

– The numeric style: scientific notation for fixed point

– Showing digits after a decimal point even if they are zeroes

– Showing plus signs in front of positive numbers

– Left or right justifying numbers in a given space

Formatting Output to Files

• Format output to the screen with:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

• Format output to a file using out_stream with:

out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);

precision(n);

• precision is a member function of output streams

– After out_stream.precision(2);
the output of numbers with decimal points will show:
• a total of 2 significant digits

23. 2.2e7 2.2 6.9e-1 0.00069
OR

• 2 digits after the decimal point
23.56 2.26e7 2.21 0.69 0.69e-4

• Calls to precision apply
only to the stream named in the call

n significant digits
vs

n digits after the decimal pt

setf(ios::fixed);

• setf is a member function of output streams

– setf is an abbreviation for set flags
• ios::fixed is a formatting flag

– out_stream.setf(ios::fixed);

All further output of floating point numbers are written in
fixed-point notation

– There are other formatting flags for setf

• Calls to setf apply
only to the stream named in the call

setf(ios::showpoint);

After out_stream.setf(ios::showpoint);

output of floating point numbers
shows the decimal point

even if all digits after the decimal point are
zeroes

11/2/2016 Matni, CS16, Fa16 9

Creating Space in Output

• The width member function specifies the number of
spaces for the next item
– Applies only to the next item of output

Example:

• To print the digit 7 in four spaces and use
out_stream.width(4);

out_stream << 7 << endl;

Three of the spaces will be blank:

7 7

.setf(ios::right)

default

.setf(ios::left)

Not Enough Width?

• What if the argument for width is too small?

– Such as specifying cout.width(3);
when the value to print is 3456.45

• The entire item is always put in output

– If too few spaces are specified, as many more
spaces as needed are used

– In the example above, the value is still printed as if the
cout.width(3); was not there.

Unsetting Flags

• Any flag that is set, may be unset

• Use the unsetf function

– Example:
cout.unsetf(ios::showpos);

causes the program to stop printing
plus signs on positive numbers

Manipulators

• A function called in a nontraditional way

– Manipulators, in turn, call member functions

– Manipulators may or may not have arguments

– Used after the insertion operator (<<) as if the
manipulator function call is an output item

The setw Manipulator

• setw does the same task as member function width
– setw calls the width function to set spaces for output

– Found in the library <iomanip>

• Example: cout << "Start" << setw(4) << 10

<< setw(4) << 20 << setw(6) << 30;

produces: Start 10 20 30

2 Spaces 4 Spaces

• The 1st setw(4) ensures 4 spaces between “Start" and 10, INCLUSIVE of the spaces taken up by 10.

• The 2nd setw(4) ensures 4 spaces between 10 and 20, INCLUSIVE of the spaces taken up by 20.

• The 3rd setw(6) ensures 6 spaces between 20 and 30, INCLUSIVE of the space taken up by 30.

The setprecision Manipulator

• setprecision does the same task as member function precision
– Found in the library <iomanip>

• Example: cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2)

<< 10.3 << endl
<< "$" << 20.5 << endl;

produces: $10.30
$20.50

• setprecision setting stays in effect until changed

More on File I/O

11/2/2016 Matni, CS16, Fa16 16

Stream Names as Arguments

• Streams can be arguments to a function

– The function's formal parameter for the stream must be
call-by-reference

• Example:
void make_neat(ifstream& messy_file,

ofstream& neat_file);

Detecting the End of a File

• Input files used by a program may vary in length
– Programs may not be able to assume the number of items in the file

• 2 ways to know if the end of the file is reached:
– The Boolean expression (in_stream.eof())

• Utilizes the member function eof() … or end-of-file

• True if you have reached the end of file

• False if you have not reached the end of file

– The Boolean expression (in_stream >> next)

• Reads a value from in_stream and stores it in next

• True if a value can be read and stored in next

• False if there is not a value to be read (i.e. the end of the file)

End of File Example
using while (ifstream >> next) method

• To calculate the average of the numbers in a file that
contains numbers of type double:

double next, sum = 0;

int count = 0;

while(in_stream >> next) {
sum = sum + next;
count++;

}

double average = sum / count;

End of File Example
using while (!ifstrem.eof()) method

• To read each character in a file,
and then write it to the screen:

in_stream.get(next);

while (! in_stream.eof()) {
cout << next;
in_stream.get(next);

}

Which of the 2 Should I Use?!

In general:

• Use eof when input is treated as text and using a

member function get to read input

• Use the extraction operator method when processing

numerical data

Stream Arguments and Namespaces

• Using directives have been local to function definitions in the
examples so far

• When parameter type names are in a namespace, a using
directive must be outside the function so that C++ will
understand the parameter type names such as ifstream
– Using directive example: using namespace std;

• Easy solution: place the using directive at the start of the file
– Many experts do not approve of this,

because it does not allow for using
multiple namespaces with names in common

11/2/2016 Matni, CS16, Fa16 23

Character I/O

All data is input and output as characters

• Output of the number 10 is two characters '1' and '0'

• Input of the number 10 is also done as '1' and '0'

• Interpretation of 10 as the number 10
or as 2 characters depends on the program

• Conversion between characters and numbers
is usually automatic, but not always

Low Level Character I/O

Low level C++ functions for character I/O:

• Perform character input and output

• Do not perform automatic conversions

• Allow you to do I/O in anyway you can devise

Member Function get(char)

• Member function of every input stream
– i.e. works for cin and for ifstream

• Reads one character from an input stream

• Stores the character read in a variable of type char, which is
the single argument the function takes

• Does not use the extraction operator (>>)
– >> actually performs some other automatic work

• Does not skip blanks, tabs, new lines
– These are characters too!

Using get

• These lines use get to read a character and store it in the
variable next_symbol

char next_symbol;

cin.get(next_symbol);

• Any character will be read with these statements

– Blank spaces too!

– '\n' too! (The newline character)

get Syntax

• input_stream.get(char_variable);

• Examples:

char next_symbol;

cin.get(next_symbol);

ifstream in_stream;
in_stream.open("infile.dat");
in_stream.get(next_symbol);

More About get

• Given this code:

and this input:

• c1 = 'A'

• On the other hand: cin >> c1 >> c2 >> c3;

would place 'C' in c3 because ">>" operator

skips newline characters

c3 = '\n'c2 = 'B'

char c1, c2, c3;
cin.get(c1);
cin.get(c2);
cin.get(c3);

AB

CD

The End of The Line using get

• To read and echo an entire line of input by collecting all
characters before the newline character

• Look for '\n' at the end of the input line:
cout <<"Enter a line of input and I will "

<< "echo it.\n";
char symbol;
do {

cin.get(symbol);
cout << symbol;

} while (symbol != '\n');

• All characters, including '\n' will be output

NOTE: '\n ' vs "\n "

• '\n'
– A value of type char

– Can be stored in a variable of type char

• "\n"
– A string containing only one character

– Cannot be stored in a variable of type char

• In a cout statement they produce the same result

Member Function put

• Member function of every output stream
– i.e. works for cout and for ofstream

• Requires one argument of type char

• Places its argument of type char in the output stream

• Does not do allow you to do more than previous output with
the insertion operator and cout

put Syntax

• output_stream.put(char_variable);

• Examples:

cout.put(next_symbol);
cout.put('a');

ofstream out_stream;
out_stream.open("outfile.dat");
out_stream.put('Z');

Member Function putback

• The putback member function puts a char in the input stream

• putback is a member function of every input stream
– cin, ifstream

• Useful when input continues until a specific character
is read, but you do not want to process that character

• Character placed in the stream does not have to be a
character read from the stream

putback Example

• The following code reads up to the first blank in the input
stream fin, and writes the characters to the file connected to
the output stream fout

fin.get(next);
while (next != ' ')
{

fout.put(next);
fin.get(next);

}
fin.putback(next);

• The blank space read to end the loop
is put back into the input stream

Program Example: Editing a Text File

Character Functions

• Several predefined functions exist to facilitate
working with characters

• The cctype library is required for most of them
#include <cctype>
using namespace std;

The toupper Function

• toupper returns the argument's upper case character

– toupper('a') returns 'A'

– toupper('A') return 'A'

The tolower Function

• Similar to toupper function…

• tolower returns the argument's lower case character

– tolower('a') returns 'a'

– tolower('A') return 'a'

toupper & tolower return int

• Characters are actually stored as an integer assigned to the
character

• toupper and tolower actually return the integer representing
the character

cout << toupper('a'); // prints the integer for 'A‘ (65)

char c = toupper('a'); // places the integer for 'A' in c
cout << c; // prints 'A'

cout << static_cast<char>(toupper('a')); // works too

The isspace Function

• isspace returns true if the argument is whitespace

– Whitespace is: spaces, tabs, and newlines
• So, isspace(' ') returns true, so does isspace(‘\n’)

– Example:
if (isspace(next))

cout << '-';
else

cout << next;

Prints a '-' if next contains a space, tab, or newline character

11/2/2016 Matni, CS16, Fa16 42

Program Example:
Looking for numbers

Strings in C++
A high-level view

• Strings, as used with the <string> library,
allows the programmer to use strings as a
basic data type

• The class of strings are defined as arrays of
characters

11/2/2016 Matni, CS16, Fa16 44

The Standard string Class

String Basics

• Include the <string> library
– There are variable types called C-strings as well… more on those later

• Use the + operator to concatenate 2 strings
string str1 = “Hello ”, str2 = “world!”, str3;

str3 = str1 + str2; // str3 will be “Hello world!”

• Use the += operator to append to a string
str1 += “Z”; // str1 will be “Hello Z”

• Call out a character in the string based on position
– Recall array indices in C++ start at zero (0)
cout << str1[0]; // prints out ‘H’

cout << str2[3]; // prints out ‘l’

11/2/2016 Matni, CS16, Fa16 46

Character Manipulators Work Too!

• Include <cctype> to use with, for example, toupper()
string str1 = “hello”;

str1[0] = toupper(str1[0]);

cout << str1; // Will display “Hello”

• …or to use with tolower()
string str1 = “HeLLO”;

for (int i=0; i < 5; i++)

str1[i] = tolower(str1[i]);

cout << str1; // Will display “hello”

11/2/2016 Matni, CS16, Fa16 47

Built-In String Manipulators

• Search functions

– find, rfind, find_first_of, find_first_not_of

• Descriptor functions

– length, size

• Content changers

– substr, replace, append, insert, erase

11/2/2016 Matni, CS16, Fa16 48

Search Functions 1

• You can search for a the first occurrence of a string in a string
with the .find function
string str = “With a banjo on my knee and ban the bomb!”;

int position = str.find(“ban”);

cout << position; // Will display the number 7

• You can also search for a the first occurrence of a string in a
string, starting at position n
string str = “With a banjo on my knee and ban the bomb!”;

int position = str.find(“ban”, 12);

cout << position; // Will display the number 24

11/2/2016 Matni, CS16, Fa16 49

Search Functions 2

• You can use the find function to make sure a substring
is NOT in the target string
– string::npos is returned if no position exists

if (str.find(“piano”) == string::npos) {

do something here… }

// This will happen if “piano” isn’t in the string str

• You can search for a the last occurrence of a string in a string
with the .rfind function

string str = “With a banjo on my knee and ban the bomb!”;

int rposition = str.rfind(“ban”);

cout << rposition; // Will display the number 28

11/2/2016 Matni, CS16, Fa16 50

Search Functions 3

• find_first_of

– Finds 1st occurrence of any of the characters included in the specified string

• find_first_not_of

– Finds 1st occurrence of a character that is not any of the characters included
in the specified string

• Example:
string card_number;
cout << "Enter Credit Card Number: ";
cin >> card_number;

if (card_number.find_first_not_of("1234567890– ") != string::npos)
{

cout << "The card number entered contains invalid characters"
<< endl;

}

11/2/2016 Matni, CS16, Fa16 51

Descriptor Functions

• The length function returns the length of the string

– The size function does the same thing…

– So, if string str1 = “Mama Mia!”,
then str1.length() =

Example – what will this code do?:
string name = “Bubba Smith”;
for (int i = name.length(); i > 0; i--)

cout << name[i-1];

11/2/2016 Matni, CS16, Fa16 52

9

Content Changers 1
append, erase

• Use function append to append one string to another
string name1 = “ Max”;
string name2 = “ Powers”;

cout << name1.append(name2); // Displays “ Max Powers”

– Does the same thing as: name1 + name2

– Appends to the string and is a call by reference (i.e. the string changes)

• Use function erase to clear a string to an empty string
– One use is: name1.erase() -- Does the same thing as: name1 = “”

– Another use is: name1.erase(start position, how many chars to erase)

• Erases part of the string and is a call by reference (i.e. the string changes)

• Example:
cout << name2.erase(2, 2); // Displays “ Pers”

11/2/2016 Matni, CS16, Fa16 53

Content Changers 2
replace, insert

• Use function replace to replace part of a string with another
– Popular Usage:

string.replace(start position,
places after start position to replace, replacement string)

• Use function insert to insert a substring into a string
– Popular Usage:

string.insert(start position, insertion string)

Example:

string country = “USA”;

cout << country.replace(2, 1, “ of A”); // Displays
cout << country.insert(7, “BC”); // Displays

11/2/2016 Matni, CS16, Fa16 54

“US of ABC”
“US of A”

Content Changers 3
substr

• Use function substr (short for “substring”) to extract and
return a substring of the invoking string object
– Popular Usage:

string.substr(start position, places after start position)

Example:

string city = “Santa Barbara”;

cout << city.substr(3, 5)

// Displays

11/2/2016 Matni, CS16, Fa16 55

“ta Ba”

getline function

• For standard inputs, cin is fine
– But it ignores space, tabs, and newlines

• Sometimes, you want to get
the entire line of data from the input stream or file stream

• Use the function getline for that purpose.

• It’s from the <istream> library
– istream is the “parent library” of ifstream
– If you’re already using <iostream> and <ifstream>,

you do not need to include <istream>
– istream is concerned with inputs from both keyboard and file streams

• Popular Usage:
getline(ifstream, string);
getline(cin, string);

11/2/2016 Matni, CS16, Fa16 56

Program Example:
getline demo

11/2/2016 Matni, CS16, Fa16 57

TO DOs

• Homework #10 due Tuesday 11/1

• Lab #6

– Due Friday, 11/4, at noon

11/2/2016 Matni, CS16, Fa16 58

11/2/2016 Matni, CS16, Fa16 59

