Tools for 1I/O
String & Character Manipulators

CS 16: Solving Problems with Computers |
Lecture #11

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

e Homework #10 due today

 Lab #6 is due on Friday at Noon

11/2/2016 Matni, CS16, Fal6

Lecture Outline

* Formatting output
* Character manipulators

 Character /0O

e String manipulators

11/2/2016 Matni, CS16, Fal6

Tools for Stream 1/0

* Formatting a program’s output:
— The spaces between items
— The number of digits after a decimal point
— The numeric style: scientific notation for fixed point
— Showing digits after a decimal point even if they are zeroes
— Showing plus signs in front of positive numbers
— Left or right justifying numbers in a given space

Formatting Output to Files

* Format output to the screen with:

.setf(ios::fixed);
.setf(ios::showpoint);
.precision(2);

 Format output to a file using out_stream with:

out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);

.setf(ios::fixed);

p reCiSiOn (n); setf(ios::showpoint);

.precision(Z)J

is @ member function of output streams

— After out_stream.precision(2);
the output of numbers with decimal points will show:
 a total of 2 significant digits

23. 2.2e7 2.2 6.9e-10.00069 n significant digits

OR Vs
n digits after the decimal pt

» 2 digits after the decimal point
23.56 2.26e7 2.21 0.69 0.69e-4

e Callsto apply
only to the stream named in the call

.setf(ios::fixed);

Setf(ios: :fixed)" setf(ios::showpoint);

.precision(Z)i

is @ member function of output streams

— setf is an abbreviation for
* jos::fixed is a formatting flag
— out_stream.setf(ios::fixed);
All further output of floating point numbers are written in
fixed-point notation

— There are other formatting flags for setf

e Callsto apply
only to the stream named in the call

.setf(ios::fixed);

Setf(i 0S::S h oW p O i nt); setf(ios::showpoint);

.precision(Z);{

After out_stream.setf(ios::showpoint);

output of floating point numbers
shows the decimal point
even if all digits after the decimal point are
zeroes

Formatting Flags for setf

Flag Meaning Default

jos::fixed If this flag is set, floating-point numbers are not writ- Not set
ten in e-notation. (Setting this flag automatically
unsets the flag i0s: :scientific.)

ios::scientific Ifthis flag is set, floating-point numbers are written in -~ Not set
e-notation. (Setting this flag automatically unsets the
flag i0s:: fixed.)
If neither 1os: : fixed nor ios: :scientific is set,
then the system decides how to output each number.

ios::showpoint If this flag is set, a decimal point and trailing zeros ~ Not set
are always shown for floating-point numbers. If it is
not set, a number with all zeros after the decimal
point might be output without the decimal point and
following zeros.

i0s: : showpos If this flag is set, a plus sign is output before positive ~ Not set
integer values.

ios::right If this flag is set and some field-width value is given ~ Set
with a call to the member function width, then the
next item output will be at the right end of the space
specified by width. In other words, any extra blanks
are placed before the item output. (Setting this flag
automatically unsets the flag 10s:: Teft.)

ios::left If this flag is set and some field-width value is given ~ Not set
with a call to the member function width, then the
next item output will be at the left end of the space
specified by width. In other words, any extra blanks
are placed affer the item output. (Setting this flag
automatically unsets the flag 10s: : right.)

11/2/2016 Matni, CS16, Fal6

Creating Space in Output

 The width member function specifies the number of
spaces for the next item
— Applies only to the next item of output

Example:

* To print the digit 7 in four spaces and use
out_stream.width(4);
out stream << 7 << endl;

Three of the spaces will be blank:
! /

.setf(ios::right) setf(ios::left)
default

Not Enough Width?

 What if the argument for width is too small?

— Such as specifying cout.width(3);
when the value to print is 3456.45

* The entire item is always put in output

— If too few spaces are specified, as many more
spaces as needed are used

— In the example above, the value is still printed as if the
cout.width(3); was not there.

Unsetting Flags

* Any flag that is set, may be unset
* Use the unsetf function

— Example:
cout.unsetf(ios: :showpos);

causes the program to stop printing
plus signs on positive numbers

Manipulators

e A function called in a nontraditional way
— Manipulators, in turn, call member functions
— Manipulators may or may not have arguments

— Used after the insertion operator (<<) as if the
manipulator function call is an output item

The setw Manipulator

e setw does the same task as member function

— setw calls the width function to set spaces for output
— Found in the library <iomanip>

* Example: cout << "Start" << setw(4) << 10
<< setw(4) << 20 << setw(6) << 30;

produces: Start 1

N

2 Spaces 4 Spaces

The 15t setw(4) ensures 4 spaces between “Start” and 10, INCLUSIVE of the spaces taken up by 10.
The 2" setw(4) ensures 4 spaces between 10 and 20, INCLUSIVE of the spaces taken up by 20.
The 3 setw(6) ensures 6 spaces between 20 and 30, INCLUSIVE of the space taken up by 30.

The setprecision Manipulator

* setprecision does the same task as member function
— Found in the library <iomanip>

 Example: cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2)
<< 10.3 << endl
<< "$" << 20.5 << endl;

produces: $10.30
S20.50

e setprecision setting stays in effect until changed

More on File |/O

11/2/2016

Matni, CS16, Fal6

16

Stream Names as Arguments

* Streams can be arguments to a function

— The function's formal parameter for the stream must be
call-by-reference

 Example:

void make neat(ifstream& messy file,
ofstream& neat file);

Detecting the End of a File

* Input files used by a program may vary in length

— Programs may not be able to assume the number of items in the file

e 2 ways to know if the end of the file is reached:

— The Boolean expression (in_stream.eof())
» Utilizes the member function eof() ... or end-of-file
e True if you have reached the end of file
* False if you have not reached the end of file
— The Boolean expression
e Reads a value from in_stream and stores it in next
* True if a value can be read and stored in next
* False if there is not a value to be read (i.e. the end of the file)

End of File Example

using method

e To calculate the average of the numbers in a file that
contains numbers of type double:

hext, sum = O;
count = 0;
while(in_stream >> next) {

sum = sum + next;
count++;

average = sum / count;

End of File Example

using while (lifstrem.eof()) method

* To read each character in a file,
and then write it to the screen:

in_stream.get(next);

while (! in_stream.eof()) {
cout << next;
in_stream.get(next);

¥

Which of the 2 Should | Use?!

In general:

* Use eof when input is treated as text and using a

member function get to read input

e Use the extraction operator method when processing

numerical data

Stream Arguments and Namespaces

Using directives have been local to function definitions in the
examples so far

When parameter type names are in a namespace, a using
directive must be outside the function so that C++ will
understand the parameter type names such as ifstream

— Using directive example: using namespace std;

Easy solution: place the using directive at the start of the file

— Many experts do not approve of this,
because it does not allow for using
multiple namespaces with names in common

11/2/2016

Matni, CS16, Fal6

23

Character I/0

All data is input and output as characters

Output of the number 10 is two characters '1' and '0'
Input of the number 10 is also done as '1' and 'O

Interpretation of 10 as the number 10
or as 2 characters depends on the program

Conversion between characters and numbers
is usually automatic, but not always

Low Level Character 1/0O

Low level C++ functions for character I/0:
* Perform character input and output
* Do not perform automatic conversions

* Allow you to do I/O in anyway you can devise

Member Function get(char)

Member function of every input stream
— i.e. works for cin and for ifstream

Reads one character from an input stream

Stores the character read in a variable of type char, which is
the single argument the function takes

Does not use the extraction operator (>>)
— >> actually performs some other automatic work

Does not skip blanks, tabs, new lines
— These are characters too!

Using get

 These lines use get to read a character and store it in the
variable next_symbol

char next_symbol;
cin.get(next _symbol);

* Any character will be read with these statements
— Blank spaces too!
— '\n' too! (The newline character)

get Syntax

* input_stream.get(char_variable);

 Examples:

next_symbol;
cin.get(next_symbol);

in_stream;
in_stream.open(" ")
in_stream.get(next_symbol);

More About get

* Given this code: char c1, c2, c3;
cin.get(cl);

cin.get(c2);
cin.get(c3);

AB
CcD

e c1='A' 2="B' c3="\n'

and this input:

* On the other hand: cin >> cl1 >> c2 >> c3;

would place 'C' in c3 because ">>" operator
skips newline characters

The End of The Line using get

* Toread and echo an entire line of input by collecting all
characters before the newline character

* Look for "\n' at the end of the input line:

cout <<"Enter a line of input and I will "
<< "echo it.\n";
char symbol;
do {
cin.get(symbol);
cout << symbol;
} while (symbol != '\n');

* All characters, including "\n' will be output

NOTE: '\n'vs "\n"
e \n'

— A value of type char
— Can be stored in a variable of type char

e "\n"

— A string containing only one character
— Cannot be stored in a variable of type char

* |n a cout statement they produce the same result

Member Function put

Member function of every output stream

— i.e. works for cout and for ofstream
Requires one argument of type char
Places its argument of type char in the output stream

Does not do allow you to do more than previous output with
the insertion operator and cout

put Syntax

e output_stream.put(char_variable);

 Examples:

cout.put(next symbol);
cout.put('a');

ofstream out_stream;
out_stream.open("outfile.dat");
out_stream.put('zZ');

Member Function putback

The putback member function puts a char in the input stream
putback is a member function of every input stream

— cin, ifstream

Useful when input continues until a specific character
is read, but you do not want to process that character

Character placed in the stream does not have to be a
character read from the stream

putback Example

* The following code reads up to the first blank in the input
stream fin, and writes the characters to the file connected to
the output stream fout

fin.get(next);
while (next != " ")

{
fout.put(next);

fin.get(next);

}
fin.putback(next);

* The blank space read to end the loop
is put back into the input stream

Program Example: Editing a Text File

o

-
i)

Character Functions

e Several predefined functions exist to facilitate
working with characters

* The cctype library is required for most of them

#include <cctype>
using namespace std;

The toupper Function

* toupper returns the argument's upper case character
— toupper('a') returns'A'
— toupper('A') return'A’

The tolower Function

e Similar to toupper function...

* tolower returns the argument's lower case character
— tolower('a') returns'a’
— tolower('A') return'a’

toupper & tolower return int

Characters are actually stored as an integer assigned to the
character

toupper and tolower actually return the integer representing
the character

cout << toupper('a');

char c = toupper('a');
cout << c;

cout << static_cast<char>(toupper('a'));

The isspace Function

e jisspace returns true if the argument is whitespace
— Whitespace is: spaces, tabs, and newlines

* So, isspace(' ') returns true, so does isspace(‘\n’)

— Example:
if (isspace(next))
cout << '-';
else

cout << next;

Prints a '-' if next contains a space, tab, or newline character

Some Predefined Character Functions in cctype (part 2 of 2)

Function

isupper (Char_Exp)

islower (Char_Exp)

isalpha(Char_Exp)

isdigit(Char_Exp)

isspace (Char_Exp)

Description

Returns true pro-
vided Char_Exp is
an uppercase let-
ter; otherwise,
returns false.

Returns true pro-
vided Char_Exp is
a lowercase letter;
otherwise, returns
false.

Returns true pro-
vided Char_Exp is
a letter of the
alphabet; other-
wise, returns
false.

Returns true pro-
vided Char_Exp is
one of the digits
‘0’ through '9’;
otherwise, returns
false.

Returns true pro-
vided Char_Exp is
a whitespace
character, such as
the blank or new-
line symbol; other-
wise, returns false.

Example

if (isupper(c))
cout << C <<

is uppercase.";

else
cout << C
<< " 1is not uppercase.";
char c = ’a’;

if (islower(c))
cout << c << " 1is lowercase.";
Outputs: a is Towercase.

char c = ’$’;
if (isalpha(c))
cout << C <<
else
cout << c

<< is not a letter.";
Outputs: $ is not a Tetter.

is a letter.";

if (isdigit(’3’))

cout << "It’s a digit.";
else

cout << "It’s not a digit.";
Outputs: It’s a digit.

//Skips over one "word" and
//sets c equal to the first
//whitespace character after

//the "word":
do
il

cin.get(c);

} while (! 1isspace(c));

11/2/2016

Matni, CS16, Fal6

42

Program Example:
Looking for numbers

£

-
i)

Strings in C++
A high-level view

e Strings, as used with the <string> library,
allows the programmer to use strings as a
basic data type

* The class of strings are defined as arrays of
characters

11/2/2016 Matni, CS16, Fal6

44

The Standard string Class

nams

String Basics

Include the <string> library
— There are variable types called C-strings as well... more on those later

Use the + operator to concatenate 2 strings
string strl = “Hello ”, str2 = “world!”, str3;
str3 = strl + str2; // str3 will be “Hello world!”

Use the += operator to append to a string
strl += “Z7; // strl will be “Hello Z”

Call out a character in the string based on position

— Recall array indices in C++ start at zero (0)
cout << strl[0]; // prints out ‘H’
cout << str2[3]; // prints out ‘1’

11/2/2016 Matni, CS16, Fal6 46

Character Manipulators Work Too!

* Include <cctype> to use with, for example, toupper()

string strl = “hello”;
strl[@] = toupper(stri[0]);
cout << stril;

e ...ortouse with tolower()
string strl = “HelLLO”;
for (int i=0; i < 5; i++)
strl[i] = tolower(strl[i]);
cout << stril;

11/2/2016 Matni, CS16, Fal6

47

Built-In String Manipulators

e Search functions
— find, rfind, find_first of, find_ first not of

e Descriptor functions
— length, size

 Content changers

— substr, replace, append, insert, erase

11/2/2016 Matni, CS16, Fal6

48

Search Functions 1

You can search for a the first occurrence of a string in a string
with the .find function

int position = str.find(“ban”);
cout << position;

-

You can also search for a the first occurrence of a string in a
string, starting at position n

string str = “With a banjo‘on my knee and Qan the bomb!”;
int position = str.find(“ban”," 12);
cout << position;

11/2/2016 Matni, CS16, Fal6 49

Search Functions 2

You can use the find function to make sure a substring
is NOT in the target string

— string: :npos isreturned if no position exists

if (str.find(“piano”) == string::npos) {
do something here.. }

You can search for a the last occurrence of a string in a string
with the .rfind function

string str = “With a banjo on my knee and ban the bomb!”;
int rposition = str.rfind(“ban”);
cout << rposition;

11/2/2016 Matni, CS16, Fal6 50

Search Functions 3

* find first of

— Finds 15t occurrence of any of the characters included in the specified string
e find_first_not_of

— Finds 15t occurrence of a character that is not any of the characters included

in the specified string

e Example:

string card_number;
cout << "Enter Credit Card Number: ";
cin >> card_number;

if (card_number.find_first_not_of("1234567890- ") != string::npos)
{

cout << "The card number entered contains invalid characters™
<< endl;

11/2/2016 Matni, CS16, Fal6 51

Descriptor Functions

* The length function returns the length of the string

— The size function does the same thing...

— So, if ,
then

Example — what will this code do?:

string name = “Bubba Smith”;
for (int i = name.length(); i > 0; i--)
cout << name[i-1];

11/2/2016 Matni, CS16, Fal6

Content Changers 1

append, erase

e Use function append to append one string to another

string namel = “ Max”;
string name2 = “ Powers”;

cout << namel.append(name2);
— Does the same thing as: namel + name2
— Appends to the string and is a call by reference (i.e. the string changes)

e Use function erase to clear a string to an empty string
— One use is: namel.erase() -- Does the same thing as: namel =

— Another use is: namel.erase(start position, how many chars to erase)
* Erases part of the string and is a call by reference (i.e. the string changes)

an»n

* Example:
cout << name2.erase(2, 2);

11/2/2016 Matni, CS16, Fal6 53

Content Changers 2

replace, insert

* Use function replace to replace part of a string with another

— Popular Usage:
string.replace(start position,
places after start position to replace, replacement string)

e Use function insert to insert a substring into a string

— Popular Usage:
string.insert(start position, insertion string)

Example:
string country = “USA”;

cout << country.replace(2, 1, “ of A”);
cout << country.insert(7, “BC”);

11/2/2016 Matni, CS16, Fal6 54

Content Changers 3

substr

e Use function substr (short for “substring”) to extract and
return a substring of the invoking string object

— Popular Usage:
string.substr(start position, places after start position)

Example:

string city = “Santa Barbara”;
cout << city.substr(3, 5)

11/2/2016 Matni, CS16, Fal6

55

getline function

For standard inputs, cin is fine
— Butitignores space, tabs, and newlines

Sometimes, you want to get
the entire line of data from the input stream or file stream

Use the function getline for that purpose.

It’s from the library
is the “parent library” of ifstream

— If you're already using <iostream> and <ifstream>,
you do not need to include

— istream is concerned with inputs from both keyboard and file streams

Popular Usage:
getline(ifstream, string);
getline(cin, string);

11/2/2016 Matni, CS16, Fal6

56

Program Example:
getline demo

11/2/2016

e
s W
e

Matni, CS16, Fal6 57

TO DOs

 Homework #10 due Tuesday 11/1

e Lab #6
— Due Friday, 11/4, at noon

11/2/2016 Matni, CS16, Fal6

58

11/2/2016

</LECTURE>

Matni, CS16, Fal6

59

