
Testing and Debugging
I/O Streams

Intro to OOP Concepts

CS 16: Solving Problems with Computers I
Lecture #10

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Homework #9 due today

• Lab #5 is due on Friday at Noon

• Your grades are NOT ON GAUCHOSPACE anymore.
Instead go to:

http://cs.ucsb.edu/~zmatni/cs16/CS16Grades_Fa2016.htm

10/26/2016 Matni, CS16, Fa16 2

http://cs.ucsb.edu/~zmatni/cs16/CS16Grades_Fa2016_102416.htm

Lecture Outline

• Testing & debugging techniques

• I/O streams

• An introduction to
Object Oriented Programming (OOP) concepts

10/26/2016 Matni, CS16, Fa16 3

Testing and Debugging Functions

• Each function should be tested as a separate unit

• Testing individual functions facilitates finding mistakes

• “Driver Programs” allow testing of individual functions

• Once a function is tested, it can be used in the driver program
to test other functions

Example of a Driver Test Program

10/26/2016 Matni, CS16, Fa16 5

Stubs

• When a function being tested calls other functions
that are not yet tested, use a stub

• A stub is a simplified version of a function

• Stubs are usually provide values for testing rather than
perform the intended calculation
– i.e. they’re fake functions

• Stubs should be so simple that you have confidence they will
perform correctly

Stub Example

10/26/2016 Matni, CS16, Fa16 7

Fundamental Rule
for Testing Functions

Test every function in a program in which

every other function in that program

has already been fully tested and debugged

Debugging Your Code

• Keep an open mind
– Don’t assume the bug is in a particular location

• Don’t randomly change code without understanding what
you are doing until the program works
– This strategy may work for the first few small programs you write

but it is doomed to failure for any programs of moderate complexity

• Show the program to someone else

General Debugging Techniques

• Check for common errors, for example:
– Local vs. Reference Parameters

– = instead of ==

– Did you use && when you meant ||?

– These are typically errors that might not get flagged by a compiler

• Localize the error
– Narrow down bugs by using cout statements to reveal internal

(hidden) values of variables

– Once you reveal the bug and fix it, remove the cout statements

Example: Debug this Program

10/27/2016 Matni, CS16, Fa16 12

Other Debugging Techniques

• Use a debugger tool

– Typically part of an IDE (integrated development environment)

– Allows you to stop and step through a program line-by-line
while inspecting variables

• Use the assert macro

– Can be used to test pre or post conditions

#include <cassert>

assert(boolean expression)

– If the boolean is false then the program will abort

• Not a good idea to keep in the program once you’re done

Assert Example

• Denominator should not be zero in Newton’s Method

10/26/2016 Matni, CS16, Fa16 15

I/O Streams

• I/O = program Input and Output

• Input can be delivered to your program via a stream object

• This is when input can be from:

– The keyboard

– A file

• Output is delivered to the output device via a stream object

• Output devices can be:

– The screen

– A file

Objects

• Objects are special variables that have their
own special-purpose functions

– Example: string length can be gotten with
stringname.size()

– These are called member functions

Streams and Basic File I/O

• Files for I/O are the same type of files
used to store programs

• A stream is a flow of data

• Input stream: Data flows into the program

• Output stream: Data flows out of the program

cin And cout Streams

• cin
– Input stream connected to the keyboard

• cout
– Output stream connected to the screen

• cin and cout are defined in the iostream library
– Use include directive: #include <iostream>

• You can also use streams with files

Why Use Files?

• Files allow you to store data permanently!

• Data output to a file lasts after the program ends

– You can usually view them without the need of a C++ program

• An input file can be used over and over

– No typing of data again and again for testing

• Create or read files at your convenience

• Files allow you to deal with larger data sets

File I/O

• Reading from a file
– Taking input from a file

– Done from beginning to the end (not always)
• No backing up to read something again (but OK to start over)

• Similar to how it’s done from the keyboard

• Writing to a file
– Sending output to a file

– Done from beginning to end (not always)
• No backing up to write something again (but OK to start over)

• Similar to how it’s done to the screen

Stream Variables for File I/O

Like other variables, a stream variable…

• Must be declared before it can be used

• Must be initialized before it contains valid data

– Initializing a stream means connecting it to a file

– The value of the stream variable is really the file it is
connected to

• Can have its value changed

– Changing a stream value means disconnecting from one
file and then connecting to another

Streams and Assignment

• A stream is a special kind of variable called an object
– Objects can use special functions to complete tasks

• Streams use special functions instead of the
assignment operator to change values

• Example:

streamObjectX.open(“addressBook.txt”);

streamObjectX.close();

Declaring An
Input-file Stream Variable

• Input-file streams are of type ifstream

• Type ifstream is defined in the fstream library

• You must use the include and using directives
#include <fstream>

using namespace std;

• Declare an input-file stream variable with:
ifstream in_stream;

Variable type Variable name

Declaring An
Output-file Stream Variable

• Ouput-file streams of are type ofstream

• Type ofstream is defined in the fstream library

• Again, you must use the include and using directives
#include <fstream>

using namespace std;

• Declare an input-file stream variable using
ofstream out_stream;

Variable type Variable name

Connecting To A File

• Once a stream variable is declared,
you connect it to a file

– Connecting a stream to a file means “opening” the file

– Use the open function of the stream object

in_stream.open("infile.dat");

Period

File name on the disk

Double quotes

Input
Data File

Your C++
Program

Output
Data File

Using The Input Stream

• Once connected to a file, get input from the
file using the extraction operator (>>)
– Just like how you do that with cin

Example:

ifstream in_stream;

int one_number, another_number;

in_stream >> one_number >> another_number;

Using The Output Stream

• An output-stream works similarly using the insertion
operator (<<)
– Just like how you do that with cout

Example:

ofstream out_stream;
out_stream.open(“outfile.dat”);

out_stream << “one number = ”
<< one_number
<< “, another number = ”
<< another_number;

External File Names

An External File Name…

• Is the name of a file that the operating system uses
– infile.dat and outfile.dat used in the previous examples

• Is the "real", on-the-disk, name for a file

• Needs to match the naming conventions on your system
– Don’t call an input **text** file XYZ.jpg, for example…

• Usually only used in the stream's open statement
– Example: in_stream.open("infile.dat");

• Once open, it is referred to with
the name of the stream connected to it

– Example: in_stream >> VariableX;

Closing a File

• After using a file, it should be closed using the .close() function

– This disconnects the stream from the file

– Close files to reduce the chance of a file being corrupted if the program
terminates abnormally

• Example: in_stream.close();

• It is important to close an output file if your program later needs
to read input from the output file

• The system will automatically close files if you forget
as long as your program ends normally!

10/27/2016 Matni, CS16, Fa16 31

Objects

• An object is a variable that has functions and
data associated with it

– in_stream and out_stream each have a function named
open associated with them

– in_stream and out_stream use different versions of a
function named open
• One version of open is for input files

• A different version of open is for output files

Member Functions

• A member function is a function associated with an object
– The open function is a member function of

in_stream in the previous examples

– Likewise, a different open function is a member function of
out_stream in the previous examples

– Same for the close function

• For a list of member functions for I/O stream classes, see:
http://www.cplusplus.com/reference/fstream/ifstream/

http://www.cplusplus.com/reference/fstream/ofstream/

http://www.cplusplus.com/reference/fstream/ifstream/
http://www.cplusplus.com/reference/fstream/ofstream/

Objects and
Member Function Names

• Objects of different types
have different member functions

– Some of these member functions might have the same name

• Different objects of the same type
have the same member functions

Classes vs. Objects

• A type whose variables are objects, is a class

– ifstream is the type of the in_stream variable (the object)

– ifstream is a class

– The class of an object determines its member functions

– Example:
ifstream in_stream1, in_stream2;

• in_stream1.open and in_stream2.open
are the same function (because they are the same class)

but might have different arguments

Class Member Functions

• Member functions of an object
are the member functions of its class

• The class determines the member functions that
an object can use

– The class ifstream has an open function

– Every variable (object) declared of type ifstream
also has that open function

Calling a Member Function

• Calling a member function requires specifying the object
containing the function

• The calling object is separated from the member
function by the dot operator

• Example: in_stream.open("infile.dat");

Calling object

Dot operator

Member function

Member Function: Calling Syntax

• Syntax for calling a member function:

Calling_object.Member_Function_Name(Argument_list);

Errors On Opening Files

• Opening a file can fail for several reasons

– The file might not exist

– The name might be typed incorrectly

– Other reasons

• Caution: You may not see an error message if
the call to open fails!!

– Program execution continues!

Catching Stream Errors

• Member function fail(), can be used to test the
success of a stream operation

– fail() returns a Boolean type (true or false)

– fail() returns true (1) if the stream operation failed

Halting Execution

• When a stream open function fails, it is generally best to stop
the program

• The function exit, halts a program
– exit returns its argument to the operating system

– exit causes program execution to stop

– exit is NOT a member function

• Exit requires the include and using directives
#include <cstdlib>

using namespace std;

Using fail and exit

• Immediately following the call to open, check that the
operation was successful:

in_stream.open("stuff.dat");

if(in_stream.fail())
{

cout << "Input file opening failed.\n";
exit(1) ;

}

Techniques for File I/O

When reading input from a file do not include prompts
or echo the input

– The lines cout << "Enter the number: ";
cin >> the_number;
cout << "The number you entered is "

<< the_number;

become just one line

in_file >> the_number;

– The input file must contain just the data that’s expected

Appending Data

• Output examples we’ve given so far create new files
– If the output file already contained data, that data is now lost

• To append new output to the end an existing file use the constant
ios::app defined in the iostream library:

outStream.open("important.txt", ios::app);

• If the file does not exist, a new file will be created

• Other member functions include those that return where in the
output file (or input file) the next data will be
– Helps with customizing read and writing files

– To be used carefully!

File Names as Input

• Program users can also enter the name of a file to use for input or
for output

• Program name must use a “string of characters” variable
– You can limit the size of a string by declaring

a sequence (an array) of characters
– Declaring a variable to hold a string of characters:

char file_name[16];
• file_name is the name of a variable
• Brackets enclose the maximum number of characters + 1
• The variable file_name contains up to 15 characters

• Note: Program names cannot take string type variables!
– This is mostly for legacy reasons with older versions of C++
– There is a work-around using the function c_str() in the string class

• Ignore for now…

TO DOs

• Homework #10 due Tuesday 11/1

• Lab #5

– Due Friday, 10/28, at noon

• Lab #6

– Will be posted at the end of the weekend

10/27/2016 Matni, CS16, Fa16 46

10/26/2016 Matni, CS16, Fa16 47

