Testing and Debugging
|/O Streams
Intro to OOP Concepts

CS 16: Solving Problems with Computers |
Lecture #10

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

e Homework #9 due today
 Lab #5 is due on Friday at Noon

* Your grades are NOT ON GAUCHOSPACE anymore.
Instead go to:

http://cs.ucsb.edu/~zmatni/cs16/CS16Grades Fa2016.htm

10/26/2016 Matni, CS16, Fal6

http://cs.ucsb.edu/~zmatni/cs16/CS16Grades_Fa2016_102416.htm

Lecture Outline

* Testing & debugging techniques

* |/O streams

* Anintroduction to
Object Oriented Programming (OOP) concepts

10/26/2016 Matni, CS16, Fal6

Testing and Debugging Functions

Each function should be tested as a separate unit
Testing individual functions facilitates finding mistakes
“Driver Programs” allow testing of individual functions

Once a function is tested, it can be used in the driver program
to test other functions

Example of a Driver Test Program

int main()

{
using namespace std;
double wholesale_cost;
int shelf_time;
char ans;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

do

{

get_input(wholesale_cost, shelf_time);

cout << "Wholesale cost is now $"
<< wholesale_cost << endl;

cout << "Days until sold is now
<< shelf_time << endl;

cout << "Test again?"
<< " (Type y for yes or n for no): ";
cin >> ans;
cout << endl;
} while (ans == 'y’ || ans == 'Y');

return 0;

10/26/2016 Matni, CS16, Fal6

Stubs

When a function being tested calls other functions
that are not yet tested, use a stub

A stub is a simplified version of a function

Stubs are usually provide values for testing rather than
perform the intended calculation

— i.e. they’re fake functions

Stubs should be so simple that you have confidence they will
perform correctly

10/26/2016

Stub Example

//Uses iostream: fully tested
void get_input(double& cost, int& turnover) - function
{
using namespace std;
cout << "Enter the wholesale cost of item: $";
cin >> cost;
cout << "Enter the expected number of days until sold: ";
cin >> turnover;
} function

being tested
//Uses iostream:

void give_output(double cost, int turnover, double price)
{
using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "Wholesale cost = $" << cost << endl
<< "Expected time until sold = "
<< turnover << " days" << end]
<< "Retail price= $" << price << endl;

}

//This is only a stub: “””f/,,,smb
double price(double cost, int turnover)
{

return 9.99; //Not correct, but good enough for some testing.

Matni, CS16, Fal6

Fundamental Rule
for Testing Functions

Test every function in a program in which
every other function in that program
has already been fully tested and debugged

Debugging Your Code

Keep an open mind
— Don’t assume the bug is in a particular location

Don’t randomly change code without understanding what
you are doing until the program works

— This strategy may work for the first few small programs you write
but it is doomed to failure for any programs of moderate complexity

Show the program to someone else

General Debugging Techniques

* Check for common errors, for example:
— Local vs. Reference Parameters
— =instead of ==
— Did you use && when you meant | |?
— These are typically errors that might not get flagged by a compiler

e Localize the error

— Narrow down bugs by using cout statements to reveal internal
(hidden) values of variables

— Once you reveal the bug and fix it, remove the cout statements

Example: Debug this Program

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 double fahrenheit;

7 double celsius;

8

9 cout << "Enter temperature in Fahrenheit." << endl;
10 cin >> fahrenheit;

11 celsius = (5 / 9) * (fahrenheit - 32);

12 cout << "Temperature in Celsius is " << celsius << endl;
13

14 return 0;

15 }

Sample Dialogue

Enter temperature in Fahrenheit.
100
Temperature in Celsius 1is 0

W oo~ Oy BN

#include <iostream>
using namespace std;

Sample Dialogue

Enter temperature in Fahrenheit.

nt .
;n main() 100
double fahrenheit; fahrenheit - 32 = 68
double celsius; conversionFactor = 0

Temperature in Celsius is 0

cout << "Enter temperature in Fahrenhei
cin >> fahrenheit;

// Comment out original line of code but leave it code that is
// in the program for our reference " commentedout
// celsius = (5 / 9) * (fahrenheit - 32); <«

// Add cout statements to verify (5 / 9) and (fahrenheit - 32)
// are computed correctly

double conversionFactor =5 / 9;

double tempFahrenheit = (fahrenheit - 32);

I R TP (.

AEPLUAAING

et)

14l e

with cout
e e gy g
SLALGITENTS

cout << "fahrenheit - 32 = " << tempFahrenheit << endl; ‘///f-:

cout << "conversionFactor = << conversionFactor << endl;

e

celsius = conversionFactor * tempFahrenheit;
cout << "Temperature in Celsius 1s " << celsius << endl;

return 0;

10/27/2016 Matni, CS16, Fal6 12

Other Debugging Techniques

 Use a debugger tool
— Typically part of an IDE (integrated development environment)

— Allows you to stop and step through a program line-by-line
while inspecting variables

* Use the assert macro

— Can be used to test pre or post conditions
#include <cassert>
assert(boolean expression)

— |If the boolean is false then the program will abort

* Not a good idea to keep in the program once you’re done

Assert Example

e Denominator should not be zero in Newton’s Method

// Approximates the square root of n using Newton's
// Iteration.
// Precondition: n 1s positive, num_iterations 1s positive
// Postcondition: returns the square root of n
double newton_sqroot(double n, int num_iterations)
{
double answer = 1;
int 1 = 0;

assert((n > 0) && (num_iterations> 0));
while (i <num_iterations)
{
answer = 0.5 * (answer + n / answer);
T4++;
}

return answer;

Matni, CS16, Fal6

15

/O Streams

1/O = program Input and Output

Input can be delivered to your program via a stream object
This is when input can be from:

— The keyboard

— Afile
Output is delivered to the output device via a stream object
Output devices can be:

— The screen
— Afile

Objects

Objects are special variables that have their
own special-purpose functions

— Example: string length can be gotten with
stringname.size()

— These are called member functions

Streams and Basic File I/0O

Files for I/O are the same type of files
used to store programs

A stream is a flow of data
Input stream: Data flows into the program

Output stream: Data flows out of the program

cin And cout Streams

cin
— Input stream connected to the keyboard

cout
— Output stream connected to the screen

cin and cout are defined in the iostream library
— Use include directive: #include <iostream>

You can also use streams with files

Why Use Files?

Files allow you to store data permanently!

Data output to a file lasts after the program ends

— You can usually view them without the need of a C++ program

An input file can be used over and over

— No typing of data again and again for testing

Create or read files at your convenience

Files allow you to deal with larger data sets

File 1/O

 Reading from a file
— Taking input from a file

— Done from beginning to the end (not always)
* No backing up to read something again (but OK to start over)
e Similar to how it’s done from the keyboard

* Writing to a file
— Sending output to a file

— Done from beginning to end (not always)
* No backing up to write something again (but OK to start over)
* Similar to how it’s done to the screen

Stream Variables for File I/O

Like other variables, a stream variable...

e Must be declared before it can be used

 Must be initialized before it contains valid data
— Initializing a stream means connecting it to a file
— The value of the stream variable is really the file it is
connected to
* Can have its value changed

— Changing a stream value means disconnecting from one
file and then connecting to another

Streams and Assignment

* Astream is a special kind of variable called an object
— Objects can use special functions to complete tasks

e Streams use special functions instead of the
assignment operator to change values

e Example:

streamObjectX.open(“addressBook.txt”);
streamObjectX.close();

Declaring An
Input-file Stream Variable

Input-file streams are of type ifstream

Type ifstream is defined in the fstream library

You must use the include and using directives

#include <fstream>
using namespace std;

Declare an input-file stream variable with:
ifstream in_stream;

Variable type Variable name

Declaring An
Output-file Stream Variable

Ouput-file streams of are type ofstream

Type ofstream is defined in the fstream library

Again, you must use the include and using directives

#include <fstream>
using namespace std;

Declare an input-file stream variable using
ofstream out stream;

Variable type Variable name

Connecting To A File - o F

* Once a stream variable is declared,
you connect it to a file
— Connecting a stream to a file means “opening” the file
— Use the open function of the stream object

in_stream.open("infile.dat");

T Double quotes
Period

File name on the disk

Using The Input Stream

 Once connected to a file, get input from the
file using the extraction operator (>>)

— Just like how you do that with cin

Example:

ifstream in_stream;
int one number, another_number;
in_stream >> one_number >> another_number;

Using The Output Stream

e An output-stream works similarly using the insertion
operator (<<)
— Just like how you do that with cout

Example:

ofstream out_stream;
out_stream.open(“outfile.dat”);

out_stream << “one number = ”
<< one_number
<< “, another number = ”
<< another_number;

External File Names

An External File Name...

* |Is the name of a file that the operating system uses

— infile.dat and outfile.dat used in the previous examples
* |sthe "real", on-the-disk, name for a file
* Needs to match the naming conventions on your system

— Don’t call an input **text** file XYZ.jpg, for example...
e Usually only used in the stream's open statement
— Example: in_stream.open("infile.dat");

* Once open, it is referred to with
the name of the stream connected to it

— Example: in_stream >> VariableX;

Closing a File

After using a file, it should be closed using the .close() function
— This disconnects the stream from the file

— Close files to reduce the chance of a file being corrupted if the program
terminates abnormally

Example: in_stream.close();

It is important to close an output file if your program later needs
to read input from the output file

The system will automatically close files if you forget
as long as your program ends normally!

Matni, CS16, Fal6

31

Objects

* An object is a variable that has functions and
data associated with it

— in_stream and out_stream each have a function named
open associated with them

— in_stream and out_stream use different versions of a
function named open
* One version of open is for input files
* A different version of open is for output files

Member Functions

* A member function is a function associated with an object

— The open function is a member function of
in_stream in the previous examples

— Likewise, a different open function is a member function of
out_stream in the previous examples

— Same for the close function

* For a list of member functions for I/O stream classes, see:
http://www.cplusplus.com/reference/fstream/ifstream/
http://www.cplusplus.com/reference/fstream/ofstream/

http://www.cplusplus.com/reference/fstream/ifstream/
http://www.cplusplus.com/reference/fstream/ofstream/

Objects and
Member Function Names

* Objects of different types
have different member functions

— Some of these member functions might have the same name

» Different objects of the same type
have the same member functions

Classes vs. Objects

* Atype whose variables are objects, is a class
— ifstream is the type of the in_stream variable (the object)
— ifstream is a class
— The class of an object determines its member functions

— Example:
ifstream in_stream1, in_stream?2;

* in_streaml.open and in_stream?2.open
are the same function (because they are the same class)
but might have different arguments

Class Member Functions

 Member functions of an object
are the member functions of its class

 The class determines the member functions that
an object can use
— The class ifstream has an open function

— Every variable (object) declared of type ifstream
also has that open function

Calling a Member Function

Calling a member function requires specifying the object
containing the function

The calling object is separated from the member
function by the dot operator

Example: in_stream.open("infile.dat");

R

Calling object Member function

Dot operator

Member Function: Calling Syntax

* Syntax for calling a member function:

Calling_object.Member_Function_Name(Argument_list);

Errors On Opening Files

* Opening a file can fail for several reasons
— The file might not exist
— The name might be typed incorrectly
— Other reasons

e Caution: You may not see an error message if
the call to open fails!!

— Program execution continues!

Catching Stream Errors

* Member function fail(), can be used to test the
success of a stream operation

— fail() returns a Boolean type (true or false)
— fail() returns true (1) if the stream operation failed

Halting Execution

When a stream open function fails, it is generally best to stop
the program

The function exit, halts a program
— exit returns its argument to the operating system
— exit causes program execution to stop
— exitis NOT a member function

Exit requires the include and using directives

#include <cstdlib>
using namespace std;

Using fail and exit

* Immediately following the call to open, check that the
operation was successful:

in_stream.open("stuff.dat");
if(in_stream.fail())
{

cout << "Input file opening failed.\n";
exit(1l) ;

Techniques for File I/0

When reading input from a file do not include prompts
or echo the input

— The lines cout << "Enter the number: ";
cin >> the_number;

cout << "The number you entered is "
<< the_number;

become just one line
in _file >> the_number;

— The input file must contain just the data that’s expected

Appending Data

Output examples we’ve given so far create new files
— If the output file already contained data, that data is now lost

To append new output to the end an existing file use the constant
ios::app defined in the iostream library:
outStream.open("important.txt", ios::app);

If the file does not exist, a new file will be created

Other member functions include those that return where in the
output file (or input file) the next data will be

— Helps with customizing read and writing files

— To be used carefully!

Ile Names as Input

* Program users can also enter the name of a file to use for input or
for output

* Program name must use a “string of characters” variable

— You can limit the size of a string by declaring
a sequence (an array) of characters

— Declaring a variable to hold a string of characters:
char file name[16];

* file_name is the name of a variable
* Brackets enclose the maximum number of characters + 1
* The variable file_name contains up to 15 characters

 Note: Program names cannot take string type variables!
— This is mostly for legacy reasons with older versions of C++

— There is a work-around using the function c_str() in the string class
* lgnore for now...

TO DOs

 Homework #10 due Tuesday 11/1

e Lab #5
— Due Friday, 10/28, at noon

 Lab #6
— Will be posted at the end of the weekend

10/27/2016 Matni, CS16, Fal6

46

10/26/2016

</LECTURE>

Matni, CS16, Fal6

47

